A041265 Denominators of continued fraction convergents to sqrt(145).
1, 24, 577, 13872, 333505, 8017992, 192765313, 4634385504, 111418017409, 2678666803320, 64399421297089, 1548264777933456, 37222754091700033, 894894362978734248, 21514687465581321985, 517247393536930461888, 12435452132351912407297
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (24,1).
Crossrefs
Programs
-
Mathematica
Denominator[Convergents[Sqrt[145], 30]] (* Vincenzo Librandi, Dec 14 2013 *)
Formula
a(n) = F(n, 24), the n-th Fibonacci polynomial evaluated at x=24. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 21 2008: (Start)
a(n) = 24*a(n-1) + a(n-2) for n > 1, a(0)=1, a(1)=24.
G.f.: 1/(1-24*x-x^2). (End)
Extensions
More terms from Colin Barker, Nov 14 2013
Comments