A041449 Denominators of continued fraction convergents to sqrt(240).
1, 2, 61, 124, 3781, 7686, 234361, 476408, 14526601, 29529610, 900414901, 1830359412, 55811197261, 113452753934, 3459393815281, 7032240384496, 214426605350161, 435885451084818, 13290990137894701, 27017865726874220, 823826961944121301, 1674671789615116822
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0,62,0,-1).
Programs
-
Magma
I:=[1,2,61,124]; [n le 4 select I[n] else 62*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 18 2013
-
Mathematica
Denominator[Convergents[Sqrt[240], 30]] (* Vincenzo Librandi, Dec 18 2013 *) a0[n_] := Sqrt[2+(31-8*Sqrt[15])^(1+2*n)+(31+8*Sqrt[15])^(1+2*n)]/8 // Simplify a1[n_] := 2*Sum[a0[i], {i, 0, n}] Flatten[MapIndexed[{a0[#-1],a1[#-1]}&,Range[11]]] (* Gerry Martens, Jul 10 2015 *)
Formula
G.f.: -(x^2-2*x-1) / ((x^2-8*x+1)*(x^2+8*x+1)). - Colin Barker, Nov 17 2013
a(n) = 62*a(n-2) - a(n-4) for n>3. - Vincenzo Librandi, Dec 18 2013
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n-1),a1(n-1)] for n>0:
a0(n) = sqrt(2+(31-8*sqrt(15))^(2*n+1)+(31+8*sqrt(15))^(2*n+1))/8.
a1(n) = 2*sum(i=0,n,a0(i)). (End)
Extensions
More terms from Colin Barker, Nov 17 2013