cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A041537 Denominators of continued fraction convergents to sqrt(285).

Original entry on oeis.org

1, 1, 8, 17, 127, 144, 4735, 4879, 38888, 82655, 617473, 700128, 23021569, 23721697, 189073448, 401868593, 3002153599, 3404022192, 111930863743, 115334885935, 919275065288, 1953885016511, 14596470180865, 16550355197376, 544207836496897, 560758191694273
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,8,17,127,144,4735,4879,38888,82655, 617473,700128]; [n le 12 select I[n] else 4862*Self(n-6)-Self(n-12): n in [1..40]]; // Vincenzo Librandi, Dec 19 2013
  • Mathematica
    Denominator[Convergents[Sqrt[285], 30]] (* Harvey P. Dale, Nov 08 2013 *)
    CoefficientList[Series[-(x^10 - x^9 + 8 x^8 - 17 x^7 + 127 x^6 - 144 x^5 - 127 x^4 - 17 x^3 - 8 x^2 - x - 1)/((x^4 - 17 x^2 + 1) (x^8 + 17 x^6 + 288 x^4 + 17 x^2 + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 19 2013 *)

Formula

G.f.: -(x^10 -x^9 +8*x^8 -17*x^7 +127*x^6 -144*x^5 -127*x^4 -17*x^3 -8*x^2 -x -1) / ((x^4 -17*x^2 +1)*(x^8 +17*x^6 +288*x^4 +17*x^2 +1)). - Colin Barker, Nov 18 2013
a(n) = 4862*a(n-6) - a(n-12) for n>11. - Vincenzo Librandi, Dec 19 2013

Extensions

More terms from Colin Barker, Nov 18 2013
Showing 1-1 of 1 results.