A041611 Denominators of continued fraction convergents to sqrt(323).
1, 1, 35, 36, 1259, 1295, 45289, 46584, 1629145, 1675729, 58603931, 60279660, 2108112371, 2168392031, 75833441425, 78001833456, 2727895778929, 2805897612385, 98128414600019, 100934312212404, 3529895029821755, 3630829342034159, 126978092658983161
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Eric W. Weisstein, MathWorld: Lehmer Number
- Index entries for linear recurrences with constant coefficients, signature (0,36,0,-1).
Programs
-
Magma
I:=[1,1,35,36]; [n le 4 select I[n] else 36*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Dec 21 2013
-
Mathematica
Denominator[Convergents[Sqrt[323], 30]] (* Vincenzo Librandi Dec 21 2013 *)
Formula
G.f.: -(x^2-x-1) / (x^4-36*x^2+1). - Colin Barker, Nov 19 2013
a(n) = 36*a(n-2) - a(n-4) for n > 3. - Vincenzo Librandi, Dec 21 2013
From Peter Bala, May 28 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = ( sqrt(34) + sqrt(38) )/2 and beta = ( sqrt(34) - sqrt(38) )/2 be the roots of the equation x^2 - sqrt(34)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(n) = Product_{k = 1..floor((n-1)/2)} ( 34 + 4*cos^2(k*Pi/n) ).
Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 34*a(2*n) + a(2*n - 1). (End)
Extensions
More terms from Colin Barker, Nov 19 2013
Comments