cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041612 Numerators of continued fraction convergents to sqrt(325).

Original entry on oeis.org

18, 649, 23382, 842401, 30349818, 1093435849, 39394040382, 1419278889601, 51133434066018, 1842222905266249, 66371158023650982, 2391203911756701601, 86149711981264908618, 3103780835237293411849, 111822259780523827735182, 4028705132934095091878401
Offset: 0

Views

Author

Keywords

Comments

a(2*n) and b(2*n) = A041613(2*n) give all (positive integer) solutions to the Pell equation a^2 - 13*b^2 = -1. a(2*n+1) and b(2*n+1) = A041613(2*n+1) give all (positive integer) solutions to the Pell equation a^2 - 13*b^2 = 1. - Robert FERREOL, Oct 09 2024

Crossrefs

Cf. A040306 (continued fraction), A041613 (denominators), A295330.

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[325], 30]] (* Vincenzo Librandi, Nov 04 2013 *)

Formula

From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 36*a(n-1) + a(n-2), n > 1; a(0)=18, a(1)=649.
G.f.: (18+x)/(1-36*x-x^2). (End)
a(n) = ((18 + 5*sqrt(13))^(n+1) + (18 - 5*sqrt(13))^(n+1))/2. - Robert FERREOL, Oct 09 2024

Extensions

Additional term from Colin Barker, Nov 09 2013