A041612 Numerators of continued fraction convergents to sqrt(325).
18, 649, 23382, 842401, 30349818, 1093435849, 39394040382, 1419278889601, 51133434066018, 1842222905266249, 66371158023650982, 2391203911756701601, 86149711981264908618, 3103780835237293411849, 111822259780523827735182, 4028705132934095091878401
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (36,1).
Programs
-
Mathematica
Numerator[Convergents[Sqrt[325], 30]] (* Vincenzo Librandi, Nov 04 2013 *)
Formula
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 36*a(n-1) + a(n-2), n > 1; a(0)=18, a(1)=649.
G.f.: (18+x)/(1-36*x-x^2). (End)
a(n) = ((18 + 5*sqrt(13))^(n+1) + (18 - 5*sqrt(13))^(n+1))/2. - Robert FERREOL, Oct 09 2024
Extensions
Additional term from Colin Barker, Nov 09 2013
Comments