A042859 Denominators of continued fraction convergents to sqrt(960).
1, 1, 61, 62, 3781, 3843, 234361, 238204, 14526601, 14764805, 900414901, 915179706, 55811197261, 56726376967, 3459393815281, 3516120192248, 214426605350161, 217942725542409, 13290990137894701, 13508932863437110, 823826961944121301, 837335894807558411
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Eric Weisstein's World of Mathematics, Lehmer Number
- Index entries for linear recurrences with constant coefficients, signature (0,62,0,-1).
Programs
-
Magma
I:=[1,1,61,62]; [n le 4 select I[n] else 62*Self(n-2)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Dec 25 2013
-
Mathematica
Denominator[Convergents[Sqrt[960], 30]] (* Vincenzo Librandi, Dec 25 2013 *)
Formula
G.f.: -(x^2-x-1) / ((x^2-8*x+1)*(x^2+8*x+1)). - Colin Barker, Dec 25 2013
a(n) = 62*a(n-2) - a(n-4) for n>3. - Vincenzo Librandi, Dec 25 2013
From Peter Bala, May 26 2014: (Start)
The following remarks assume an offset of 1:
Let alpha = sqrt(15) + 4 and beta = sqrt(15) - 4 be the roots of the equation x^2 - sqrt(60)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(n) = product {k = 1..floor((n-1)/2)} ( 60 + 4*cos^2(k*Pi/n) ). Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 60*a(2*n) + a(2*n - 1). (End)
Extensions
More terms from Colin Barker, Dec 25 2013
Comments