cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A143390 Numbers in which every suffix (in base 10) is 1 or a prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 23, 31, 37, 41, 43, 47, 53, 61, 67, 71, 73, 83, 97, 101, 103, 107, 113, 131, 137, 167, 173, 197, 211, 223, 241, 271, 283, 307, 311, 313, 317, 331, 337, 347, 353, 367, 373, 383, 397, 401, 431, 443, 461, 467, 503, 523, 541, 547, 571, 601
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 13 2008

Keywords

Comments

Subsequence of A042986 apart from first term; a(n+1)=A042986(n) for n<25.

Crossrefs

Programs

  • Mathematica
    prQ[n_] := n == 1 || PrimeQ[n];
    okQ[n_] := Module[{dd = IntegerDigits[n]}, AllTrue[Range[Length[dd]-1], prQ@ FromDigits@ Drop[dd, #]&]];
    {1}~Join~Select[ Prime@Range[1000], okQ] (* Jean-François Alcover, Nov 20 2019 *)
  • PARI
    is(n)=my(d=digits(n,10)); for(i=1,#d-1, if(!isprime(fromdigits(d[i..#d],10)), return(0))); isprime(d[#d]) || d[#d]==1 \\ Charles R Greathouse IV, Nov 26 2016

A215378 Primes congruent to {0, 1, 2, 3} mod 11.

Original entry on oeis.org

2, 3, 11, 13, 23, 47, 67, 79, 89, 101, 113, 157, 167, 179, 199, 211, 223, 233, 277, 311, 331, 353, 397, 409, 419, 421, 431, 443, 463, 487, 509, 541, 563, 607, 617, 619, 641, 661, 673, 683, 727, 739, 751, 761, 773, 827, 839, 859, 881, 883, 937, 947, 971
Offset: 1

Views

Author

Vincenzo Librandi, Aug 09 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | p mod 11 in [0, 1, 2, 3]];
  • Mathematica
    Select[Prime[Range[300]],MemberQ[{0,1,2,3},Mod[#,11]]&]

A215379 Primes congruent to {0, 1, 2, 3} mod 13.

Original entry on oeis.org

2, 3, 13, 29, 41, 53, 67, 79, 107, 131, 157, 197, 211, 223, 263, 313, 353, 367, 379, 419, 431, 443, 457, 509, 521, 523, 547, 587, 599, 601, 613, 653, 677, 691, 743, 757, 769, 809, 821, 859, 887, 911, 937, 977, 991, 1069, 1093, 1171
Offset: 1

Views

Author

Vincenzo Librandi, Aug 09 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1200) | p mod 13 in [0..3]];
  • Mathematica
    Select[Prime[Range[300]],MemberQ[{0,1, 2,3},Mod[#,13]]&]

A215380 Primes congruent to {0, 1, 2, 3} mod 17.

Original entry on oeis.org

2, 3, 17, 19, 37, 53, 71, 103, 137, 139, 173, 223, 239, 241, 257, 307, 359, 409, 443, 461, 479, 547, 563, 613, 631, 647, 683, 733, 751, 853, 887, 919, 937, 953, 971, 1021, 1039, 1091, 1123, 1193, 1259, 1277, 1327, 1361, 1429, 1447, 1481, 1499, 1531, 1549
Offset: 1

Views

Author

Vincenzo Librandi, Aug 09 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2000) | p mod 17 in [0..3]];
  • Mathematica
    Select[Prime[Range[300]],MemberQ[{0,1, 2,3},Mod[#,17]]&]

A215381 Primes congruent to {0, 1, 2, 3} mod 19.

Original entry on oeis.org

2, 3, 19, 41, 59, 79, 97, 173, 191, 193, 211, 229, 269, 307, 383, 401, 419, 421, 439, 457, 571, 647, 743, 761, 839, 857, 877, 953, 971, 991, 1009, 1103, 1123, 1181, 1217, 1237, 1409, 1427, 1447, 1483, 1523, 1559, 1579, 1597, 1637, 1693, 1787, 1789, 1901, 1979
Offset: 1

Views

Author

Vincenzo Librandi, Aug 09 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2000) | p mod 19 in [0..3]];
  • Mathematica
    Select[Prime[Range[300]],MemberQ[{0, 1, 2,3},Mod[#,19]]&]
Showing 1-5 of 5 results.