cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A043290 Maximal run length in base 16 representation of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    A043290[n_]:=Max[Map[Length,Split[IntegerDigits[n,16]]]];Array[A043290,100] (* Paolo Xausa, Sep 27 2023 *)
  • PARI
    A043290(n,b=16)={my(m,c=1);while(n>0,n%b==(n\=b)%b && c++ && next;m=max(m,c);c=1);m} \\ Use optional 2nd arg to get sequences A043276 through A043289. - M. F. Hasler, Jul 23 2013
    
  • Python
    from itertools import groupby
    def A043290(n): return max(len(list(g)) for k, g in groupby(hex(n)[2:])) # Chai Wah Wu, Mar 09 2023

Extensions

More terms from Antti Karttunen, Sep 21 2018

A031943 Numbers with no consecutive equal base-5 digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 28, 29, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 57, 58, 59, 65, 66, 67, 69, 70, 71, 72, 73, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A000975 (base-2 analog), A031941 or A043089 (base-3 analog), A031942 or A043090 (base-4 analog), A043092, ..., A043096 (base-6 through base-10 analog).

Programs

  • Mathematica
    Select[Range[90],FreeQ[Differences[IntegerDigits[#,5]],0]&] (* Harvey P. Dale, Nov 30 2019 *)

Formula

A031943 = { n | A043279(n)=1 } = A043091 \ {0}. - M. F. Hasler, Jul 23 2013

A043287 Maximal run length in base-13 representation of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    A043287[n_]:=Max[Map[Length,Split[IntegerDigits[n,13]]]];Array[A043287,100] (* Paolo Xausa, Sep 27 2023 *)
  • PARI
    A043287(n,b=13)={my(m,c=1);while(n>0,n%b==(n\=b)%b&&c++&&next;m=max(m,c);c=1);m} \\ M. F. Hasler, Jul 23 2013

Extensions

More terms from Antti Karttunen, Sep 21 2018

A043288 Maximal run length in base-14 representation of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    A043288[n_]:=Max[Map[Length,Split[IntegerDigits[n,14]]]];Array[A043288,100] (* Paolo Xausa, Sep 27 2023 *)
  • PARI
    A043288(n,b=14)={my(m,c=1);while(n>0,n%b==(n\=b)%b&&c++&&next;m=max(m,c);c=1);m} \\ M. F. Hasler, Jul 23 2013

Extensions

More terms from Antti Karttunen, Sep 21 2018

A037982 Numbers whose maximal base 5 run length is 3.

Original entry on oeis.org

31, 62, 93, 124, 125, 155, 157, 158, 159, 187, 218, 249, 250, 281, 310, 311, 313, 314, 343, 374, 375, 406, 437, 465, 466, 467, 469, 499, 500, 531, 562, 593, 620, 621, 622, 623, 626, 627, 628, 629, 656, 687, 718, 749, 750, 775
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A043279.

Programs

  • Mathematica
    Select[Range[800],Max[Length/@Split[IntegerDigits[#,5]]]==3&] (* Harvey P. Dale, Feb 15 2022 *)

A037981 Maximal base 5 run length is 2.

Original entry on oeis.org

6, 12, 18, 24, 25, 30, 32, 33, 34, 37, 43, 49, 50, 56, 60, 61, 63, 64, 68, 74, 75, 81, 87, 90, 91, 92, 94, 99, 100, 106, 112, 118, 120, 121, 122, 123, 126, 127, 128, 129, 131, 137, 143, 149, 150, 151, 152, 153, 154, 160, 161, 162, 163
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A043279.

Programs

  • Mathematica
    Select[Range[170],Max[Length/@Split[IntegerDigits[#,5]]]==2&] (* Harvey P. Dale, Mar 29 2025 *)
Showing 1-6 of 6 results.