cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A039946 Expansion of Molien series for 8-dimensional complex Clifford group of genus 3 and order 743178240.

Original entry on oeis.org

1, 1, 2, 5, 9, 16, 31, 53, 89, 152, 245, 384, 601, 911, 1351, 1986, 2856, 4037, 5653, 7791, 10592, 14268, 18990, 24999, 32643, 42218, 54112, 68869, 86971, 109014, 135812, 168101, 206769, 252990, 307849, 372616, 448934, 538348
Offset: 0

Views

Author

E. M. Rains

Keywords

Examples

			G.f. = 1 + x^8 + 2*x^16 + 5*x^24 + 9*x^32 + 16*x^40 + 31*x^48 + ...
		

Crossrefs

Programs

  • Maple
    f(x):= (1 +x^3 +3*x^4 +3*x^5 +6*x^6 +8*x^7 +12*x^8 +18*x^9 +25*x^10 +29*x^11 +40*x^12 +50*x^13 +58*x^14 +69*x^15 +80*x^16 +85*x^17 +96*x^18 +104*x^19 +107*x^20 +109*x^21 +112*x^22 +109*x^23+107*x^24 +104*x^25 +96*x^26 +85*x^27 +80*x^28 +69*x^29 +58*x^30 +50*x^31 +40*x^32 +29*x^33 +25*x^34 +18*x^35 +12*x^36 +8*x^37 +6*x^38 +3*x^39 +3*x^40 +x^41 +x^44) / ( (1-x)^2*(1-x^3)^4*(1-x^5)^2*(1 +x +2*x^3 +2*x^4 + x^5 +4*x^6 +2*x^7 +x^8 +5*x^9 +2*x^10 +2*x^11 +5*x^12 +x^13 +2*x^14 + 4*x^15 +x^16 +2*x^17 +2*x^18 +x^20 +x^21) ); seq(coeff(series(f(x), x, n+1), x, n), n = 0..40);
  • Mathematica
    CoefficientList[Series[(1+x^3+3*x^4+3*x^5+6*x^6+8*x^7+12*x^8+18*x^9+25*x^10 + 29*x^11+40*x^12+50*x^13+58*x^14+69*x^15+80*x^16+85*x^17+96*x^18+104*x^19 + 107*x^20+109*x^21+112*x^22+109*x^23+107*x^24+104*x^25+96*x^26+85*x^27+80*x^28 +69*x^29+58*x^30+50*x^31+40*x^32+29*x^33+25*x^34+18*x^35+12*x^36 + 8*x^37 + 6*x^38+3*x^39+3*x^40+x^41+x^44)/((1-x)^2*(1-x^3)^4*(1-x^5)^2*(1+x+2*x^3+2*x^4 +x^5+4*x^6+2*x^7+x^8+5*x^9+2*x^10+2*x^11+5*x^12+x^13+2*x^14+4*x^15+x^16+2*x^17 +2*x^18+x^20+x^21)), {x,0,40}], x] (* G. C. Greubel, Feb 01 2020 *)
    LinearRecurrence[{1,1,1,-2,-1,0,1,-1,1,0,0,-1,1,2,1,-3,-2,0,2,1,-1,0,0,-1,1,2,0,-2,-3,1,2,1,-1,0,0,1,-1,1,0,-1,-2,1,1,1,-1},{1,1,2,5,9,16,31,53,89,152,245,384,601,911,1351,1986,2856,4037,5653,7791,10592,14268,18990,24999,32643,42218,54112,68869,86971,109014,135812,168101,206769,252990,307849,372616,448934,538348,642630,764021,904658,1066943,1253876,1468340,1713529},40] (* Harvey P. Dale, Jul 04 2021 *)

Formula

G.f.: (1 +x^24 +3*x^32 +3*x^40 +6*x^48 +8*x^56 +12*x^64 +18*x^72 +25*x^80 +29*x^88 +40*x^96 +50*x^104 +58*x^112 +69*x^120 +80*x^128 +85*x^136 +96*x^144 +104*x^152 +107*x^160 +109*x^168 +112*x^176 +109*x^184 +107*x^192 +104*x^200 +96*x^208 +85*x^216 +80*x^224 +69*x^232 +58*x^240 +50*x^248 +40*x^256 +29*x^264 +25*x^272 +18*x^280 +12*x^288 +8*x^296 +6*x^304 +3*x^312 +3*x^320 +x^328 +x^352) / ( (1-x^8)^2*(1-x^24)^4*(1-x^40)^2*(1 +x^8 +2*x^24 +2*x^32 + x^40 +4*x^48 +2*x^56 +x^64 +5*x^72 +2*x^80 +2*x^88 +5*x^96 +x^104 +2*x^112 + 4*x^120 +x^128 +2*x^136 +2*x^144 +x^160 +x^168) ), nonzero terms.
G.f.: (1 +x^3 +3*x^4 +3*x^5 +6*x^6 +8*x^7 +12*x^8 +18*x^9 +25*x^10 +29*x^11 +40*x^12 +50*x^13 +58*x^14 +69*x^15 +80*x^16 +85*x^17 +96*x^18 +104*x^19 +107*x^20 +109*x^21 +112*x^22 +109*x^23+107*x^24 +104*x^25 +96*x^26 +85*x^27 +80*x^28 +69*x^29 +58*x^30 +50*x^31 +40*x^32 +29*x^33 +25*x^34 +18*x^35 +12*x^36 +8*x^37 +6*x^38 +3*x^39 +3*x^40 +x^41 +x^44) / ( (1-x)^2*(1-x^3)^4*(1-x^5)^2*(1 +x +2*x^3 +2*x^4 + x^5 +4*x^6 +2*x^7 +x^8 +5*x^9 +2*x^10 +2*x^11 +5*x^12 +x^13 +2*x^14 + 4*x^15 +x^16 +2*x^17 +2*x^18 +x^20 +x^21) ). - G. C. Greubel, Feb 01 2020

Extensions

Typo in reduced g.f.s. corrected by Georg Fischer, Apr 18 2020

A051354 Expansion of Molien series for 16-dimensional complex Clifford group of genus 4 and order 97029351014400.

Original entry on oeis.org

1, 1, 2, 7, 19, 52, 172, 550, 1782, 5845, 18508, 56345, 164157, 454518, 1196924, 3003750, 7198311, 16523847, 36447873, 77478005, 159172517, 316874035, 612729396, 1153359711, 2117566545, 3798941401, 6670327291, 11479693332, 19390588953, 32185179449, 52553840336
Offset: 0

Views

Author

Keywords

Comments

Oura gives an explicit formula for the Molien series that produces A027672; the present sequence is the subsequence formed from the terms whose exponents are multiples of 8 (that is, every other term of A027672). In other words, the present Molien series is (f(x)+f(z*x))/2, where z = exp(2*Pi*I/8) and f(x) is the Molien series for the group H_4 given explicitly by Oura in Theorem 4.1.

Examples

			1 + t^8 + 2*t^16 + 7*t^24 + 19*t^32 + 52*t^40 + 172*t^48 + ...
		

Crossrefs

Programs

  • Mathematica
    (* See link for Mathematica program. *)

Formula

a(n) = A027672(2*n).

Extensions

Edited by Georg Fischer, Jan 24 2021
Showing 1-2 of 2 results.