A039946 Expansion of Molien series for 8-dimensional complex Clifford group of genus 3 and order 743178240.
1, 1, 2, 5, 9, 16, 31, 53, 89, 152, 245, 384, 601, 911, 1351, 1986, 2856, 4037, 5653, 7791, 10592, 14268, 18990, 24999, 32643, 42218, 54112, 68869, 86971, 109014, 135812, 168101, 206769, 252990, 307849, 372616, 448934, 538348
Offset: 0
Examples
G.f. = 1 + x^8 + 2*x^16 + 5*x^24 + 9*x^32 + 16*x^40 + 31*x^48 + ...
Links
- Jean-François Alcover, Table of n, a(n) for n = 0..499
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,-2,-1,0,1,-1,1,0,0,-1,1,2,1,-3,-2,0,2,1,-1,0,0,-1,1,2,0,-2,-3,1,2,1,-1,0,0,1,-1,1,0,-1,-2,1,1,1,-1).
Programs
-
Maple
f(x):= (1 +x^3 +3*x^4 +3*x^5 +6*x^6 +8*x^7 +12*x^8 +18*x^9 +25*x^10 +29*x^11 +40*x^12 +50*x^13 +58*x^14 +69*x^15 +80*x^16 +85*x^17 +96*x^18 +104*x^19 +107*x^20 +109*x^21 +112*x^22 +109*x^23+107*x^24 +104*x^25 +96*x^26 +85*x^27 +80*x^28 +69*x^29 +58*x^30 +50*x^31 +40*x^32 +29*x^33 +25*x^34 +18*x^35 +12*x^36 +8*x^37 +6*x^38 +3*x^39 +3*x^40 +x^41 +x^44) / ( (1-x)^2*(1-x^3)^4*(1-x^5)^2*(1 +x +2*x^3 +2*x^4 + x^5 +4*x^6 +2*x^7 +x^8 +5*x^9 +2*x^10 +2*x^11 +5*x^12 +x^13 +2*x^14 + 4*x^15 +x^16 +2*x^17 +2*x^18 +x^20 +x^21) ); seq(coeff(series(f(x), x, n+1), x, n), n = 0..40);
-
Mathematica
CoefficientList[Series[(1+x^3+3*x^4+3*x^5+6*x^6+8*x^7+12*x^8+18*x^9+25*x^10 + 29*x^11+40*x^12+50*x^13+58*x^14+69*x^15+80*x^16+85*x^17+96*x^18+104*x^19 + 107*x^20+109*x^21+112*x^22+109*x^23+107*x^24+104*x^25+96*x^26+85*x^27+80*x^28 +69*x^29+58*x^30+50*x^31+40*x^32+29*x^33+25*x^34+18*x^35+12*x^36 + 8*x^37 + 6*x^38+3*x^39+3*x^40+x^41+x^44)/((1-x)^2*(1-x^3)^4*(1-x^5)^2*(1+x+2*x^3+2*x^4 +x^5+4*x^6+2*x^7+x^8+5*x^9+2*x^10+2*x^11+5*x^12+x^13+2*x^14+4*x^15+x^16+2*x^17 +2*x^18+x^20+x^21)), {x,0,40}], x] (* G. C. Greubel, Feb 01 2020 *) LinearRecurrence[{1,1,1,-2,-1,0,1,-1,1,0,0,-1,1,2,1,-3,-2,0,2,1,-1,0,0,-1,1,2,0,-2,-3,1,2,1,-1,0,0,1,-1,1,0,-1,-2,1,1,1,-1},{1,1,2,5,9,16,31,53,89,152,245,384,601,911,1351,1986,2856,4037,5653,7791,10592,14268,18990,24999,32643,42218,54112,68869,86971,109014,135812,168101,206769,252990,307849,372616,448934,538348,642630,764021,904658,1066943,1253876,1468340,1713529},40] (* Harvey P. Dale, Jul 04 2021 *)
Formula
G.f.: (1 +x^24 +3*x^32 +3*x^40 +6*x^48 +8*x^56 +12*x^64 +18*x^72 +25*x^80 +29*x^88 +40*x^96 +50*x^104 +58*x^112 +69*x^120 +80*x^128 +85*x^136 +96*x^144 +104*x^152 +107*x^160 +109*x^168 +112*x^176 +109*x^184 +107*x^192 +104*x^200 +96*x^208 +85*x^216 +80*x^224 +69*x^232 +58*x^240 +50*x^248 +40*x^256 +29*x^264 +25*x^272 +18*x^280 +12*x^288 +8*x^296 +6*x^304 +3*x^312 +3*x^320 +x^328 +x^352) / ( (1-x^8)^2*(1-x^24)^4*(1-x^40)^2*(1 +x^8 +2*x^24 +2*x^32 + x^40 +4*x^48 +2*x^56 +x^64 +5*x^72 +2*x^80 +2*x^88 +5*x^96 +x^104 +2*x^112 + 4*x^120 +x^128 +2*x^136 +2*x^144 +x^160 +x^168) ), nonzero terms.
G.f.: (1 +x^3 +3*x^4 +3*x^5 +6*x^6 +8*x^7 +12*x^8 +18*x^9 +25*x^10 +29*x^11 +40*x^12 +50*x^13 +58*x^14 +69*x^15 +80*x^16 +85*x^17 +96*x^18 +104*x^19 +107*x^20 +109*x^21 +112*x^22 +109*x^23+107*x^24 +104*x^25 +96*x^26 +85*x^27 +80*x^28 +69*x^29 +58*x^30 +50*x^31 +40*x^32 +29*x^33 +25*x^34 +18*x^35 +12*x^36 +8*x^37 +6*x^38 +3*x^39 +3*x^40 +x^41 +x^44) / ( (1-x)^2*(1-x^3)^4*(1-x^5)^2*(1 +x +2*x^3 +2*x^4 + x^5 +4*x^6 +2*x^7 +x^8 +5*x^9 +2*x^10 +2*x^11 +5*x^12 +x^13 +2*x^14 + 4*x^15 +x^16 +2*x^17 +2*x^18 +x^20 +x^21) ). - G. C. Greubel, Feb 01 2020
Extensions
Typo in reduced g.f.s. corrected by Georg Fischer, Apr 18 2020
Comments