cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A242761 Decimal expansion of the escape probability for a random walk on the 3-D cubic lattice (a Polya random walk constant).

Original entry on oeis.org

6, 5, 9, 4, 6, 2, 6, 7, 0, 4, 4, 9, 0, 0, 0, 8, 5, 7, 1, 7, 3, 7, 2, 6, 8, 1, 5, 5, 6, 7, 0, 9, 7, 1, 0, 3, 2, 8, 9, 3, 9, 1, 7, 8, 2, 8, 7, 5, 6, 9, 7, 9, 0, 2, 2, 3, 6, 7, 6, 3, 8, 9, 4, 6, 2, 2, 2, 0, 8, 0, 3, 0, 5, 4, 1, 0, 3, 7, 6, 1, 5, 3, 5, 7, 4, 7, 1, 9, 1, 8, 1, 1, 0, 9, 4, 2, 8, 6, 9, 0
Offset: 0

Views

Author

Jean-François Alcover, May 22 2014

Keywords

Examples

			0.6594626704490008571737268155670971...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9, p. 322.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (16*Sqrt(2/3)*Pi(R)^3)/(Gamma(1/24)*Gamma(5/24)*Gamma(7/24)*Gamma(11/24)); // G. C. Greubel, Oct 26 2018
  • Mathematica
    p = (16*Sqrt[2/3]*Pi^3)/(Gamma[1/24]*Gamma[5/24]*Gamma[7/24]*Gamma[11/24]); RealDigits[p, 10, 100] // First
  • PARI
    default(realprecision, 100); (16*sqrt(2/3)*Pi^3)/(gamma(1/24)* gamma(5/24)*gamma(7/24)*gamma(11/24)) \\ G. C. Greubel, Oct 26 2018
    

Formula

Equals (16*sqrt(2/3)*Pi^3)/(Gamma(1/24)*Gamma(5/24)*Gamma(7/24)*Gamma(11/24)), where Gamma is the Euler Gamma function.
Showing 1-1 of 1 results.