A043548 Least separator of first n Egyptian fractions; i.e., least k for which the integers floor(k/m) for m=1,2,...,n are distinct.
1, 1, 2, 6, 9, 16, 20, 30, 42, 49, 64, 81, 90, 110, 132, 156, 169, 196, 225, 256, 272, 306, 342, 380, 420, 441, 484, 529, 576, 625, 650, 702, 756, 812, 870, 930, 961, 1024, 1089, 1156, 1225, 1296, 1332, 1406, 1482, 1560, 1640
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A257213.
Programs
-
Haskell
a043548 n = f 1 where f k = if distinct $ (map (div k)) [n, n-1 .. 1] then k else f (k + 1) distinct [] = True; distinct (u:vs@(v:)) = u /= v && distinct vs -- Reinhard Zumkeller, Apr 19 2015
-
PARI
a(n)={if(n==1, 1, my(t=sqrtint(4*n-3)); n^2 - n*t + t^2\4)} \\ Andrew Howroyd, Feb 04 2023
Formula
a(n) = n^2 + floor(sqrt(n-1))*floor(sqrt(n)+1/2) - n*floor(sqrt(n-1)) - n*floor(sqrt(n)+1/2), for n>1. - Ridouane Oudra, Jun 08 2020
a(n) = n^2 - n*t + floor((t^2)/4), where t = floor(sqrt(4*n-3)) for n>1. - Ridouane Oudra, Jan 24 2023
Comments