cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A043569 Numbers whose base-2 representation has exactly 2 runs.

Original entry on oeis.org

2, 4, 6, 8, 12, 14, 16, 24, 28, 30, 32, 48, 56, 60, 62, 64, 96, 112, 120, 124, 126, 128, 192, 224, 240, 248, 252, 254, 256, 384, 448, 480, 496, 504, 508, 510, 512, 768, 896, 960, 992, 1008, 1016, 1020, 1022, 1024, 1536, 1792, 1920, 1984, 2016, 2032, 2040, 2044
Offset: 1

Views

Author

Keywords

Comments

Numbers whose binary representation contains the bit string "10" but not "01". Subsequence of A062289; set difference A062289 minus A101082. - Rick L. Shepherd, Nov 29 2004
Mersenne numbers (A000225) times powers of 2 (A000079). Therefore this sequence contains the even perfect numbers (A000396). - Alonso del Arte, Apr 21 2006

Crossrefs

Programs

  • Maple
    a:=proc(n) local nn,nd: nn:=convert(n,base,2): nd:={seq(nn[j]-nn[j-1],j=2..nops(nn))}: if n=2 then 2 elif nd={0,1} then n else fi end: seq(a(n),n=1..2100); # Emeric Deutsch, Apr 21 2006
  • Mathematica
    Take[Sort[Flatten[Table[(2^x - 1)*(2^y), {x, 32}, {y, 32}]]], 54] (* Alonso del Arte, Apr 21 2006 *)
    Select[Range[2500],Length[Split[IntegerDigits[#,2]]]==2&] (* or *) Select[Range[2500],SequenceCount[IntegerDigits[#,2],{1,0}]>0 && SequenceCount[ IntegerDigits[#,2],{0,1}]==0&] (* Harvey P. Dale, Oct 04 2024 *)
  • Python
    def ok(n): b = bin(n)[2:]; return "10" in b and "01" not in b
    print([m for m in range(2045) if ok(m)]) # Michael S. Branicky, Feb 04 2021
    
  • Python
    def a_next(a_n): t = a_n >> 1; return (a_n | t) + (t & 1)
    a_n = 2; a = []
    for i in range(54): a.append(a_n); a_n = a_next(a_n) # Falk Hüffner, Feb 19 2022

Formula

This sequence is twice A023758. - Franklin T. Adams-Watters, Apr 21 2006
Sum_{n>=1} 1/a(n) = A065442. - Amiram Eldar, Feb 20 2022
A007814(a(n)) = A004736(n). - Lorenzo Sauras Altuzarra, Feb 01 2023

Extensions

More terms from Rick L. Shepherd, Nov 29 2004