cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A121178 Four-column table read by rows: number of nonisomorphic systems of catafusenes in an example (see Cyvin et al. (1994) for precise definition).

Original entry on oeis.org

1, 0, 0, 0, 2, 2, 0, 0, 6, 5, 1, 0, 19, 26, 5, 1, 71, 101, 31, 2, 274, 457, 160, 16, 1117, 1978, 825, 80, 4650, 8851, 4074, 473, 19819, 39481, 19902, 2517, 85710, 178043, 95920, 13431
Offset: 1

Views

Author

N. J. A. Sloane, Aug 15 2006

Keywords

Comments

From Petros Hadjicostas, May 25 2019: (Start)
The sequence (a rectangular array) refers to Table 5 on p. 1179 of Cyvin et al. (1994). The zeroth row and the zeroth column from Table 5 do not appear in this sequence. The columns (alpha = 1, 2, 3, 4) refer to the number of appendages to the core.
The table refers to the example described on pp. 1177-1179 of the paper and especially to Figure 5 (p. 1178). The entries refer to the number of nonisomorphic systems of catafusenes in this example (as shown in Figure 5, p. 1178).
The rows of the table are indexed by the total number of hexagons in the appendages.
(End)

Examples

			The table begins:
     1,    0,    0,   0;
     2,    2,    0,   0;
     6,    5,    1,   0;
    19,   26,    5,   1;
    71,  101,   31,   2;
   274,  457,  160,  16;
  1117, 1978,  825,  80;
  4650, 8851, 4074, 473;
  ...
		

Crossrefs

Columns give A044045, A045903 - A045905. Row sums give A045906.

Extensions

Corrected by N. J. A. Sloane, Apr 14 2013 (thanks to Michel Marcus for noticing that something was wrong)
Name edited by Petros Hadjicostas, May 25 2019
More terms from reference from Petros Hadjicostas, May 25 2019

A038392 Number of mono-4-polyhexes with n cells.

Original entry on oeis.org

1, 1, 2, 6, 19, 71, 274, 1117, 4650, 19819, 85710, 375712, 1664203, 7439593, 33515758, 152019560, 693625265, 3181528275, 14661581030, 67850297506, 315187646601, 1469195636293, 6869889703638, 32215399021901, 151467334017864, 713881817440421, 3372142139764434
Offset: 1

Views

Author

Keywords

References

  • J. Brunvoll, B. N. Cyvin, and S. J. Cyvin, Studies of some chemically relevant polygonal systems: mono-q-polyhexes, ACH Models in Chem., 133 (3) (1996), 277-298; see Eq. 16.

Crossrefs

Apart from initial term, (A002212 + A007317)/2. See A044045 for another version.

Programs

  • Maple
    f:= gfun:-rectoproc({(250*n^2-250*n)*a(n)+(-300*n^2-150*n)*a(n+1)+(-325*n^2-875*n-600)*a(n+2)+(475*n^2+2045*n+2100)*a(n+3)+(35*n^2+265*n+540)*a(n+4)+(-193*n^2-1691*n-3660)*a(n+5)+(49*n^2+563*n+1596)*a(n+6)+(17*n^2+211*n+648)*a(n+7)+(-9*n^2-135*n-504)*a(n+8)+(n^2+17*n+72)*a(n+9), a(0) = 0, a(1) = 1, a(2) = 1, a(3) = 2, a(4) = 6, a(5) = 19, a(6) = 71, a(7) = 274, a(8) = 1117},a(n),remember):
    map(f, [$1..50]); # Robert Israel, Oct 08 2017
  • Mathematica
    f[z_] := Sqrt[5*z^2 - 6*z + 1]; g[z_] := (2*(1 - z^2) - (1-z)*f[z] - f[z^2])/ (4*(1-z)); Drop[ CoefficientList[ Series[ g[z], {z, 0, 24}], z], 1] (* Jean-François Alcover, Oct 13 2011, after Emeric Deutsch *)

Formula

G.f.: (2(1-z^2) - (1-z)f(z) - f(z^2))/(4(1-z)) where f(z) = sqrt(1-6z+5z^2). - Emeric Deutsch, Mar 14 2004
(250*n^2-250*n)*a(n)+(-300*n^2-150*n)*a(n+1)+(-325*n^2-875*n-600)*a(n+2)+(475*n^2+2045*n+2100)*a(n+3)+(35*n^2+265*n+540)*a(n+4)+(-193*n^2-1691*n-3660)*a(n+5)+(49*n^2+563*n+1596)*a(n+6)+(17*n^2+211*n+648)*a(n+7)+(-9*n^2-135*n-504)*a(n+8)+(n^2+17*n+72)*a(n+9) = 0. - Robert Israel, Oct 08 2017

Extensions

More terms from Emeric Deutsch, Mar 14 2004

A121070 Nonisomorphic catacondensed monoheptafusenes (see reference for precise definition).

Original entry on oeis.org

1, 1, 4, 13, 56, 234, 1034, 4570, 20492, 92329, 418896
Offset: 0

Views

Author

N. J. A. Sloane, Aug 10 2006

Keywords

References

  • B. N. Cyvin et al., A class of polygonal systems representing polycyclic conjugated hydrocarbons ..., Monat. f. Chemie, 125 (1994), 1327-1337 (see Table 1).

Crossrefs

Equals sum of columns of triangle whose successive columns are A000007, A044045, A121071, A045904, ...
Showing 1-3 of 3 results.