A044432 a(n) is the number whose base-2 representation is d(0)d(1)...d(n), where d=A005614 (the infinite Fibonacci word).
1, 2, 5, 11, 22, 45, 90, 181, 363, 726, 1453, 2907, 5814, 11629, 23258, 46517, 93035, 186070, 372141, 744282, 1488565, 2977131, 5954262, 11908525, 23817051, 47634102, 95268205, 190536410, 381072821, 762145643, 1524291286, 3048582573, 6097165147, 12194330294
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
Programs
-
Haskell
a044432 n = a044432_list !! n a044432_list = scanl1 (\v b -> 2 * v + b) a005614_list -- Reinhard Zumkeller, Apr 07 2012
-
Mathematica
FromDigits[(Floor[GoldenRatio(#+1)]-Floor[GoldenRatio #]-1)&@Range@#,2]&/@Range@40 (* Federico Provvedi, Oct 19 2018 *) Floor[2^#/FromContinuedFraction[2^Fibonacci[Range[0,3*Max[1,Floor[2+Log[(#+1)/11]/ArcSinh[2]]]]]]]&/@Range[200] (* Federico Provvedi, Nov 01 2018 *)
Formula
a(n) = 2*a(n-1) + A005614(n) for n > 0, a(0) = 1. - Reinhard Zumkeller, Apr 07 2012
From Federico Provvedi, Oct 24 2018: (Start)
a(n) = A000079(n) * Sum_{k=0..n} ((floor(phi*(k+1)) - floor(phi*k) - 1)/2^k).
a(n) = floor(2^n*(1-Sum_{n >= 1} (-1)^(n+1)*(1+2^Fibonacci(3*n+1))/((2^(Fibonacci(3*n-1))-1)*(2^(Fibonacci(3*n + 2))-1)))).
a(n) = floor(2^n*R), where R is the rabbit constant.
a(n) = floor(2^n/[1, 2, 2, 4, 8, 32, ..., 2^Fibonacci(3*h)]), with h=1 for n=0, h=floor(2+log((n+1)/11)/arcsinh(2)) for n>0. (End)
Extensions
Offset fixed by Reinhard Zumkeller, Apr 07 2012
Comments