cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A044432 a(n) is the number whose base-2 representation is d(0)d(1)...d(n), where d=A005614 (the infinite Fibonacci word).

Original entry on oeis.org

1, 2, 5, 11, 22, 45, 90, 181, 363, 726, 1453, 2907, 5814, 11629, 23258, 46517, 93035, 186070, 372141, 744282, 1488565, 2977131, 5954262, 11908525, 23817051, 47634102, 95268205, 190536410, 381072821, 762145643, 1524291286, 3048582573, 6097165147, 12194330294
Offset: 0

Views

Author

Keywords

Comments

a(n) can also be calculated as floor(2^n * R), where the rabbit constant R=0.709803442861291314641787399444575597012... converges rapidly using the result from Davison described in the comments at A014565. - Federico Provvedi, Oct 24 2018

Crossrefs

Programs

  • Haskell
    a044432 n = a044432_list !! n
    a044432_list = scanl1 (\v b -> 2 * v + b) a005614_list
    -- Reinhard Zumkeller, Apr 07 2012
  • Mathematica
    FromDigits[(Floor[GoldenRatio(#+1)]-Floor[GoldenRatio #]-1)&@Range@#,2]&/@Range@40 (* Federico Provvedi, Oct 19 2018 *)
    Floor[2^#/FromContinuedFraction[2^Fibonacci[Range[0,3*Max[1,Floor[2+Log[(#+1)/11]/ArcSinh[2]]]]]]]&/@Range[200] (* Federico Provvedi, Nov 01 2018 *)

Formula

a(n) = A000225(n+1) - A182028(n). - Reinhard Zumkeller, Apr 07 2012
a(n) = 2*a(n-1) + A005614(n) for n > 0, a(0) = 1. - Reinhard Zumkeller, Apr 07 2012
From Federico Provvedi, Oct 24 2018: (Start)
a(n) = A000079(n) * Sum_{k=0..n} ((floor(phi*(k+1)) - floor(phi*k) - 1)/2^k).
a(n) = floor(2^n*(1-Sum_{n >= 1} (-1)^(n+1)*(1+2^Fibonacci(3*n+1))/((2^(Fibonacci(3*n-1))-1)*(2^(Fibonacci(3*n + 2))-1)))).
a(n) = floor(2^n*R), where R is the rabbit constant.
a(n) = floor(2^n/[1, 2, 2, 4, 8, 32, ..., 2^Fibonacci(3*h)]), with h=1 for n=0, h=floor(2+log((n+1)/11)/arcsinh(2)) for n>0. (End)

Extensions

Offset fixed by Reinhard Zumkeller, Apr 07 2012