A045317 Primes p such that x^8 = 3 has a solution mod p.
2, 3, 11, 13, 23, 47, 59, 71, 83, 107, 109, 131, 167, 179, 181, 191, 227, 229, 239, 251, 263, 277, 311, 313, 347, 359, 383, 419, 421, 431, 433, 443, 467, 479, 491, 503, 541, 563, 587, 599, 601, 647, 659, 683, 709
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(800) | exists(t){x : x in ResidueClassRing(p) | x^8 eq 3}]; // Vincenzo Librandi, Sep 13 2012
-
Mathematica
ok[p_]:= Reduce[Mod[x^8- 3, p] == 0, x, Integers]=!=False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 13 2012 *)
-
PARI
isok(p) = isprime(p) && ispower(Mod(3, p), 8); \\ Michel Marcus, Oct 17 2018
-
PARI
isA045317(p) = isprime(p) && (p==2 || p==3 || p%12==11 || (p%8==5 && Mod(3, p)^((p-1)/4) == 1) || (p%8==1 && Mod(3, p)^((p-1)/8) == 1)) \\ Jianing Song, Jun 22 2025
Comments