cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045317 Primes p such that x^8 = 3 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 13, 23, 47, 59, 71, 83, 107, 109, 131, 167, 179, 181, 191, 227, 229, 239, 251, 263, 277, 311, 313, 347, 359, 383, 419, 421, 431, 433, 443, 467, 479, 491, 503, 541, 563, 587, 599, 601, 647, 659, 683, 709
Offset: 1

Views

Author

Keywords

Comments

Complement of A045318 relative to A000040. - Vincenzo Librandi, Sep 13 2012
Union of 2, 5, A068231 (primes congruent to 11 modulo 12), prime p == 5 (mod 8) such that 3^((p-1)/4) == 1 (mod p), and primes p == 1 (mod 8) such that 3^((p-1)/8) == 1 (mod p). - Jianing Song, Jun 22 2025

Crossrefs

A068231 < A385220 < this sequence < A040101 < A097933 (ignoring terms 2, 3), where Ax < Ay means that Ax is a subsequence of Ay.

Programs

  • Magma
    [p: p in PrimesUpTo(800) | exists(t){x : x in ResidueClassRing(p) | x^8 eq 3}]; // Vincenzo Librandi, Sep 13 2012
    
  • Mathematica
    ok[p_]:= Reduce[Mod[x^8- 3, p] == 0, x, Integers]=!=False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 13 2012 *)
  • PARI
    isok(p) = isprime(p) && ispower(Mod(3, p), 8); \\ Michel Marcus, Oct 17 2018
    
  • PARI
    isA045317(p) = isprime(p) && (p==2 || p==3 || p%12==11 || (p%8==5 && Mod(3, p)^((p-1)/4) == 1) || (p%8==1 && Mod(3, p)^((p-1)/8) == 1)) \\ Jianing Song, Jun 22 2025