A045450 Number of partitions of n into a prime number of distinct prime parts.
1, 0, 1, 1, 1, 2, 0, 2, 1, 2, 2, 3, 0, 4, 2, 4, 3, 4, 2, 5, 3, 5, 3, 5, 3, 6, 5, 5, 5, 7, 5, 9, 5, 7, 8, 8, 6, 11, 8, 11, 9, 12, 10, 14, 11, 15, 12, 15, 13, 18, 17, 17, 16, 18, 18, 23, 20, 22, 23, 25, 23, 30, 26, 28, 29, 32, 32, 36, 34, 38, 38, 41, 41, 47, 45, 47, 48, 50, 54, 58, 57, 60, 63
Offset: 5
Keywords
Examples
a(50) = 15 because there are 15 partitions of 50 into a prime number of distinct prime parts: 2+7+11+13+17 = 2+5+11+13+19 = 2+5+7+17+19 = 2+5+7+13+23 = 2+3+5+17+23 = 2+3+5+11+29 = 2+19+29 = 2+17+31 = 2+11+37 = 2+7+41 = 2+5+43 = 19+31 = 13+37 = 7+43 = 3+47.
Links
- Alois P. Heinz, Table of n, a(n) for n = 5..5000
Crossrefs
Cf. A000586.
Programs
-
Maple
s:= proc(n) if n<1 then 0 else ithprime(n)+s(n-1) fi end: b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(s(i)
`if`(p>n, 0, x*b(n-p, i-1)))(ithprime(i))))) end: a:= n-> (p-> add(`if`(isprime(i), coeff(p, x, i), 0) , i=2..degree(p)))(b(n, numtheory[pi](n))): seq(a(n), n=5..100); # Alois P. Heinz, Sep 18 2017 -
Mathematica
partprim[n_] := Module[{sp, spq, sps}, sp = Subsets[Prime[Range[PrimePi[n]]]]; spq = Select[sp, PrimeQ@Length@# &]; sps = Select[spq, n == Plus@@# &]; sps // Length // Return]; Table[partprim[n], {n, 5, 80}] (* Andres Cicuttin, Sep 17 2017 *) s[n_] := s[n] = If [n < 1, 0, Prime[n] + s[n - 1]]; b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[s[i] < n, 0, b[n, i - 1] + Function[p, If[p > n, 0, x*b[n - p, i - 1]]][Prime[i]]]]]; a[n_] := Function[p, Sum[If[PrimeQ[i], Coefficient[p, x, i], 0], {i, 2, Exponent[p, x]}]][b[n, PrimePi[n]]]; Table[a[n], {n, 5, 100}] (* Jean-François Alcover, Jun 11 2021, after Alois P. Heinz *) Table[Count[IntegerPartitions[n],?(AllTrue[#,PrimeQ]&&Length[#]==Length[ Union[ #]] && PrimeQ[Length[#]]&)],{n,5,90}] (* _Harvey P. Dale, May 17 2024 *)