cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A042992 Primes congruent to {0, 2, 3, 5, 6} (mod 7).

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 23, 31, 37, 41, 47, 59, 61, 73, 79, 83, 89, 97, 101, 103, 107, 131, 139, 149, 157, 163, 167, 173, 181, 191, 199, 223, 227, 229, 233, 241, 251, 257, 269, 271, 283, 293, 307, 311, 313, 317, 331, 349, 353, 359, 367, 373, 383, 397, 401
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A000040, A045469 (complement).

Programs

A045461 Primes congruent to {0, 1, 4} mod 7.

Original entry on oeis.org

7, 11, 29, 43, 53, 67, 71, 109, 113, 127, 137, 151, 179, 193, 197, 211, 239, 263, 277, 281, 337, 347, 379, 389, 421, 431, 449, 463, 487, 491, 547, 557, 571, 599, 613, 617, 631, 641, 659, 673, 683, 701, 739, 743
Offset: 1

Views

Author

Keywords

Comments

The same as A045469 but without the initial 7 (the only prime congruent to 0 mod 7).

Crossrefs

Cf. A045312 (complement).

Programs

  • Magma
    [ p: p in PrimesUpTo(1000) | p mod 7 in {0, 1, 4} ]; // Vincenzo Librandi, Aug 13 2012
  • Mathematica
    Select[Prime[Range[120]], MemberQ[{0, 1, 4}, Mod[#, 7]] &] (* From Alonso del Arte based on Orlovsky's program for A042992, Feb 18 2012 *)
  • PARI
    forprime(p=2,1e3,if((n->n<2||n==4)(p%7),print1(p", "))) \\ Charles R Greathouse IV, Feb 20 2012
    

Formula

a(n) ~ 3 n log n. [Charles R Greathouse IV, Feb 20 2012]

A215163 Primes congruent to {1, 4} mod 11.

Original entry on oeis.org

23, 37, 59, 67, 89, 103, 191, 199, 257, 331, 353, 367, 389, 397, 419, 433, 463, 499, 521, 587, 617, 631, 653, 661, 683, 719, 727, 829, 859, 881, 947, 983, 991, 1013, 1049, 1093, 1123, 1181, 1277, 1291, 1321, 1409, 1423, 1453, 1489, 1511, 1607, 1621, 1709, 1753, 1783, 1871, 1907
Offset: 1

Views

Author

Vincenzo Librandi, Aug 06 2012

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(2000) | p mod 11 in {1, 4} ];
  • Mathematica
    Select[Prime[Range[2000]],MemberQ[{1,4},Mod[#,11]]&]

A215164 Primes congruent to {1, 4} mod 13.

Original entry on oeis.org

17, 43, 53, 79, 131, 157, 173, 199, 251, 277, 313, 433, 443, 521, 547, 563, 599, 641, 677, 719, 797, 823, 859, 911, 937, 953, 1031, 1093, 1109, 1171, 1187, 1213, 1223, 1249, 1291, 1301, 1327, 1447, 1483, 1499, 1613, 1733, 1759, 1811, 1847, 1873, 1889, 1951, 1993
Offset: 1

Views

Author

Vincenzo Librandi, Aug 06 2012

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(2000) | p mod 13 in {1, 4} ];
  • Mathematica
     Select[Prime[Range[2000]],MemberQ[{1,4},Mod[#,13]]&]

A215165 Primes congruent to {1, 4} mod 17.

Original entry on oeis.org

89, 103, 137, 157, 191, 239, 293, 307, 409, 443, 463, 599, 613, 647, 701, 769, 919, 953, 1021, 1109, 1123, 1259, 1279, 1327, 1361, 1381, 1429, 1483, 1531, 1619, 1667, 1721, 1789, 1823, 1871, 1973, 1993, 2027, 2129, 2143, 2333, 2347, 2381, 2503, 2551, 2687
Offset: 1

Views

Author

Vincenzo Librandi, Aug 06 2012

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(3000) | p mod 17 in {1, 4} ];
  • Mathematica
    Select[Prime[Range[3000]],MemberQ[{1,4},Mod[#,17]]&]

A215166 Primes congruent to {1, 4} mod 19.

Original entry on oeis.org

23, 61, 137, 191, 229, 251, 419, 457, 479, 571, 593, 631, 647, 761, 821, 859, 1049, 1087, 1103, 1163, 1201, 1217, 1277, 1429, 1483, 1543, 1559, 1597, 1619, 1657, 1733, 1787, 1847, 1901, 1999, 2053, 2113, 2129, 2243, 2281, 2341, 2357, 2417, 2531, 2683
Offset: 1

Views

Author

Vincenzo Librandi, Aug 06 2012

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(3000) | p mod 19 in {1, 4} ];
  • Mathematica
    Select[Prime[Range[3000]],MemberQ[{1,4},Mod[#,19]]&]

A215370 Primes congruent to {0, 2, 3, 5, 6} mod 11.

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 47, 61, 71, 79, 83, 101, 113, 127, 137, 149, 157, 167, 179, 181, 193, 211, 223, 233, 269, 277, 281, 311, 313, 347, 379, 401, 409, 421, 431, 443, 457, 467, 479, 487, 509, 523, 541, 563, 577, 599, 607, 619, 641, 643, 673, 677, 709, 739
Offset: 1

Views

Author

Vincenzo Librandi, Aug 09 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(800) | p mod 11 in [0, 2, 3, 5, 6]];
  • Mathematica
    Select[Prime[Range[400]],MemberQ[{0,2,3,5,6},Mod[#,11]]&]

A215371 Primes congruent to {0, 2, 3, 5, 6} mod 13.

Original entry on oeis.org

2, 3, 5, 13, 19, 29, 31, 41, 67, 71, 83, 97, 107, 109, 149, 197, 211, 223, 227, 239, 263, 317, 331, 353, 367, 379, 383, 409, 419, 421, 431, 457, 461, 487, 499, 509, 523, 577, 587, 601, 613, 617, 643, 653, 691, 733, 743, 757, 769, 773, 809, 811, 821, 863
Offset: 1

Views

Author

Vincenzo Librandi, Aug 09 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | p mod 13 in [0, 2, 3, 5, 6]];
  • Mathematica
    Select[Prime[Range[400]],MemberQ[{0,2,3,5,6},Mod[#,13]]&]

A215372 Primes congruent to {0, 2, 3, 5, 6} mod 17.

Original entry on oeis.org

2, 3, 5, 17, 19, 23, 37, 53, 71, 73, 107, 139, 173, 193, 223, 227, 241, 257, 277, 311, 359, 379, 397, 431, 461, 479, 499, 547, 563, 601, 617, 631, 683, 719, 733, 751, 787, 821, 839, 853, 887, 907, 937, 941, 971, 991, 1009, 1039, 1091, 1093, 1193
Offset: 1

Views

Author

Vincenzo Librandi, Aug 09 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1200) | p mod 17 in [0, 2, 3, 5, 6]];
  • Mathematica
    Select[Prime[Range[400]],MemberQ[{0,2,3,5,6},Mod[#,17]]&]

A215373 Primes congruent to {0, 2, 3, 5, 6} mod 19.

Original entry on oeis.org

2, 3, 5, 19, 41, 43, 59, 79, 97, 101, 139, 157, 173, 193, 211, 233, 269, 271, 307, 347, 367, 383, 401, 421, 439, 443, 461, 499, 557, 613, 709, 727, 743, 823, 839, 857, 877, 937, 953, 971, 991, 1009, 1013, 1031, 1051, 1069, 1123, 1181, 1237, 1259, 1279, 1297
Offset: 1

Views

Author

Vincenzo Librandi, Aug 09 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | p mod 19 in [0, 2, 3, 5, 6]];
  • Mathematica
    Select[Prime[Range[400]],MemberQ[{0,2,3,5,6},Mod[#,19]]&]
Showing 1-10 of 10 results.