cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045499 Fourth-from-right diagonal of triangle A121207.

Original entry on oeis.org

1, 1, 5, 20, 85, 400, 2046, 11226, 65676, 407787, 2675410, 18475311, 133843405, 1014271763, 8019687099, 66011609670, 564494701167, 5005880952390, 45958055208576, 436161412834300, 4273045478169842, 43160044390231165
Offset: 0

Views

Author

Keywords

Comments

With leading 0 and offset 3: number of permutations beginning with 4321 and avoiding 1-23. - Ralf Stephan, Apr 25 2004
a(n) is the number of set partitions of {1,2,...,n+3} in which the last block has length 3; the blocks are arranged in order of their least element. - Don Knuth, Jun 12 2017

Crossrefs

Column k=3 of A124496.

Programs

  • Maple
    A045499 := proc(n)
        option remember ;
        if n =0  then
            1 ;
        else
            add( binomial(n+2,k+3)*procname(k),k=0..n-1) ;
        end if;
    end proc: # R. J. Mathar, Jun 03 2014
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[a[k]*Binomial[n+2, k+3], {k, 0, n-1}];
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 20 2017 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+x*subst(A, x, x/(1-x+x*O(x^n)))/(1-x)^4); polcoeff(A, n)} /* Paul D. Hanna, Mar 23 2012 */
    
  • Python
    # The function Gould_diag is defined in A121207.
    A045499_list = lambda size: Gould_diag(4, size)
    print(A045499_list(24)) # Peter Luschny, Apr 24 2016

Formula

a(n+1) = Sum_{k=0..n} binomial(n+3, k+3)*a(k). - Vladeta Jovovic, Nov 10 2003
With offset 3, e.g.f.: x^3 + exp(exp(x))/6 * int[0..x, t^3*exp(-exp(t)+t) dt]. - Ralf Stephan, Apr 25 2004
O.g.f. satisfies: A(x) = 1 + x*A( x/(1-x) ) / (1-x)^4. [Paul D. Hanna, Mar 23 2012]

Extensions

More terms from Vladeta Jovovic, Nov 10 2003
Entry revised by N. J. A. Sloane, Dec 11 2006