A045499 Fourth-from-right diagonal of triangle A121207.
1, 1, 5, 20, 85, 400, 2046, 11226, 65676, 407787, 2675410, 18475311, 133843405, 1014271763, 8019687099, 66011609670, 564494701167, 5005880952390, 45958055208576, 436161412834300, 4273045478169842, 43160044390231165
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..573
- S. Kitaev, Generalized pattern avoidance with additional restrictions, Sem. Lothar. Combinat. B48e (2003).
- S. Kitaev and T. Mansour, Simultaneous avoidance of generalized patterns, arXiv:math/0205182 [math.CO], 2002.
Programs
-
Maple
A045499 := proc(n) option remember ; if n =0 then 1 ; else add( binomial(n+2,k+3)*procname(k),k=0..n-1) ; end if; end proc: # R. J. Mathar, Jun 03 2014
-
Mathematica
a[0] = 1; a[n_] := a[n] = Sum[a[k]*Binomial[n+2, k+3], {k, 0, n-1}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 20 2017 *)
-
PARI
{a(n)=local(A=1+x); for(i=1, n, A=1+x*subst(A, x, x/(1-x+x*O(x^n)))/(1-x)^4); polcoeff(A, n)} /* Paul D. Hanna, Mar 23 2012 */
-
Python
# The function Gould_diag is defined in A121207. A045499_list = lambda size: Gould_diag(4, size) print(A045499_list(24)) # Peter Luschny, Apr 24 2016
Formula
a(n+1) = Sum_{k=0..n} binomial(n+3, k+3)*a(k). - Vladeta Jovovic, Nov 10 2003
With offset 3, e.g.f.: x^3 + exp(exp(x))/6 * int[0..x, t^3*exp(-exp(t)+t) dt]. - Ralf Stephan, Apr 25 2004
O.g.f. satisfies: A(x) = 1 + x*A( x/(1-x) ) / (1-x)^4. [Paul D. Hanna, Mar 23 2012]
Extensions
More terms from Vladeta Jovovic, Nov 10 2003
Entry revised by N. J. A. Sloane, Dec 11 2006
Comments