A045513 Expansion of 1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6)).
1, 1, 3, 5, 10, 15, 27, 39, 63, 90, 135, 187, 270, 364, 505, 670, 902, 1173, 1545, 1976, 2550, 3218, 4081, 5083, 6357, 7825, 9659, 11772, 14366, 17342, 20956, 25080, 30031, 35667, 42357, 49945, 58881
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Arjeh M. Cohen and Robert L. Griess Jr., On finite simple subgroups of the complex Lie group of type E_8, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), 367-405, Proc. Sympos. Pure Math., 47, Part 2, Amer. Math. Soc., Providence, RI, 1987.
- Kaiwen Sun and Haowu Wang, Weyl invariant E8 Jacobi forms and E-strings, arXiv:2109.10578 [math.NT], 2021. See Table 1 p. 9.
- Index entries for linear recurrences with constant coefficients, signature (1,2,0,-1,-4,-1,0,3,6,1,0,-4,-5,-5,0,5,5,4,0,-1,-6,-3,0,1,4,1,0,-2,-1,1).
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6)) )); // G. C. Greubel, Jan 13 2020 -
Maple
seq(coeff(series(1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6)), x, n+1), x, n), n = 0..40); # G. C. Greubel, Jan 13 2020
-
Mathematica
CoefficientList[Series[1/((1-x)(1-x^2)^2(1-x^3)^2(1-x^4)^2(1-x^5)(1-x^6)),{x,0,40}],x] (* Harvey P. Dale, Sep 16 2019 *)
-
PARI
Vec(1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
Formula
G.f.: 1/((1-x)*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)*(1-x^6)).
Comments