A045544 Odd values of n for which a regular n-gon can be constructed by compass and straightedge.
3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535, 65537, 196611, 327685, 983055, 1114129, 3342387, 5570645, 16711935, 16843009, 50529027, 84215045, 252645135, 286331153, 858993459, 1431655765, 4294967295
Offset: 1
References
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 73 at pp. 181-182.
Links
- Wilfrid Keller, Prime factors k.2^n + 1 of Fermat numbers F_m.
- OEIS Wiki, Constructible odd-sided polygons.
- OEIS Wiki, Sierpinski's triangle.
Crossrefs
Coincides with A001317 for the first 31 terms only. - Robert G. Wilson v, Dec 22 2001
Cf. A053576.
Programs
-
Mathematica
Union[Times@@@Rest[Subsets[{3,5,17,257,65537}]]] (* Harvey P. Dale, Sep 20 2011 *)
Formula
Each term is the product of distinct odd Fermat primes.
Sum_{n>=1} 1/a(n) = -1 + Product_{n>=1} (1+1/A019434(n)) = 0.7007354948... >= 1003212011/1431655765 = sigma(2^32-1)/(2^32-1) - 1, with equality if there are only five Fermat primes (A019434). - Amiram Eldar, Jan 22 2022
Comments