cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045575 Nonnegative numbers of the form x^y - y^x, for x,y > 1.

Original entry on oeis.org

0, 1, 7, 17, 28, 79, 118, 192, 399, 431, 513, 924, 1844, 1927, 2800, 3952, 6049, 7849, 8023, 13983, 16188, 18954, 32543, 58049, 61318, 61440, 65280, 130783, 162287, 175816, 255583, 261820, 357857, 523927, 529713, 1038576, 1048176
Offset: 1

Views

Author

Keywords

Comments

Pillai proved that there are ~ 0.5 * (log x)^2/(log log x)^2 terms of this sequence up to x. - Charles R Greathouse IV, Jul 20 2017
Conjecture: For d > 11, 10^d - d^10 is the largest (base-ten) d-digit term. - Hans Havermann, Jun 12 2023

References

  • S. S. Pillai, On the indeterminate equation x^y - y^x = a, Journal Annamalai University 1, Nr. 1, (1932), pp. 59-61. Cited in Waldschmidt 2009.

Crossrefs

Cf. A076980.

Programs

  • Maple
    N:= 10^8: # to get all terms <= N
    A:= (0,1):
    for x from 2 while x^(x+1) - (x+1)^x <= N do
       for y from x+1 do
          z:= x^y - y^x;
          if z > N then break
          elif z > 0 then A:=A,z;
          fi
    od od:
    {A}; # Robert Israel, Aug 20 2014
  • Mathematica
    Union[Flatten[Table[If[a^b-b^a>-1&&a^b-b^a<10^6*2,a^b-b^a],{a,1,123},{b,a,144}]]] (* Vladimir Joseph Stephan Orlovsky, Apr 26 2008 *)
    nn=10^50; n=1; Union[Reap[While[n++; k=n+1; num=Abs[n^k-k^n]; num
    				
  • PARI
    list(lim)=my(v=List([0]),t); for(x=2,max(logint(lim\=1,2)+1,6), for(y=2,x-1, t=abs(x^y-y^x); if(t<=lim&&t, listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Jul 20 2017