cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045629 Number of 2n-bead black-white complementable necklaces with n black beads.

Original entry on oeis.org

1, 1, 2, 3, 7, 15, 44, 128, 415, 1367, 4654, 16080, 56450, 200170, 716728, 2585850, 9393119, 34319667, 126047906, 465076160, 1723097066, 6407856892, 23910271224, 89493903438, 335912741682, 1264106399934, 4768448177636, 18027218147818
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A006840.

Programs

  • Mathematica
    a[n_] := If[n == 0, 1, (1/(2*n))*DivisorSum[n, EulerPhi[n/#1]*Binomial[2*#1 - 1, #1 - 1] + EulerPhi[2*(n/#1)]*2^(#1 - 1)&]];
    Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 08 2017, translated from PARI *)
  • PARI
    a(n) = if(n==0, 1, (1/(2*n)) * sumdiv(n, d, eulerphi(n/d)*binomial(2*d-1, d-1) + eulerphi(2*n/d)*2^(d-1))); \\ Andrew Howroyd, Sep 27 2017

Formula

a(n) = (1/2n) * Sum_{d|n} (phi(n/d)*C(2d-1, d-1) + phi(2n/d)*2^(d-1)). - Christian G. Bower
a(n) ~ 4^(n-1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 08 2017