cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A006840 Number of 2n-bead black-white reversible complementable necklaces with n black beads.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 35, 85, 257, 765, 2518, 8359, 28968, 101340, 361270, 1297879, 4707969, 17179435, 63068876, 232615771, 861725794, 3204236779, 11955836258, 44748176653, 167959144032, 632058070310, 2384235077576, 9013628451275
Offset: 0

Views

Author

Keywords

References

  • J. A. Hoskins, C. E. Praeger and A. P. Street, Balanced twills with bounded float length, Congress. Numerantium, 40 (1983), 77-89.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A259341.
Cf. A045629.

Programs

  • Mathematica
    b[n_] := (1/(2*n))*DivisorSum[n, EulerPhi[n/#]*Binomial[2*# - 1, # - 1] + EulerPhi[2*(n/#)]*2^(# - 1) &]; a[0] = 1; a[n_] := (b[n] + 2^(n-2) + Binomial[n - Mod[n, 2], Quotient[n, 2]]/2)/2; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
  • PARI
    \\ here b is A045629
    b(n) = (1/(2*n)) * sumdiv(n, d, eulerphi(n/d)*binomial(2*d-1, d-1) + eulerphi(2*n/d)*2^(d-1));
    a(n) = if(n==0, 1, (b(n) + 2^(n-2) + binomial(n-n%2, n\2)/2) / 2); \\ Andrew Howroyd, Sep 27 2017

Formula

If n is odd, a(n) = (1/2) * (A045629 + (1/2) * C(n-1, (n-1)/2) + 2^(n-2)); if n is even, a(n) = (1/2) * (A045629 + (1/2) * C(n, n/2) + 2^(n-2)). - Christian G. Bower

Extensions

More terms from David W. Wilson

A123717 Signature permutation of a Catalan automorphism: row 253 of table A122203.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 8, 7, 9, 11, 14, 16, 19, 10, 15, 13, 21, 22, 12, 20, 17, 18, 23, 25, 28, 30, 33, 37, 39, 42, 44, 47, 51, 53, 56, 60, 24, 29, 38, 43, 52, 27, 41, 35, 58, 59, 36, 62, 63, 64, 26, 40, 34, 57, 61, 31, 54, 45, 46, 32, 55, 48, 49, 50, 65, 67, 70, 72, 75, 79, 81
Offset: 0

Views

Author

Antti Karttunen, Oct 11 2006

Keywords

Comments

This is the signature-permutation of Catalan automorphism which is derived from nonrecursive Catalan automorphism *A123503 with the recursion schema SPINE (defined in A122203).
The number of fixed points in range [A014137(n-1)..A014138(n-1)] of this permutation begins as 1,1,2,1,3,1,4,1,8,1,16,1,47,..., the LCM of cycle sizes as 1,1,1,2,12,12,120,120,840,840,5040,5040,55440,... (cf. A089423) and the cycle-count sequence seems to be A045629. (To be proved.)

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

Inverse: A123718. a(n) = A057509(A089854(n)). Row 253 of A122203.

A045632 Number of 2n-bead black-white complementable necklaces with n black beads and fundamental period 2n.

Original entry on oeis.org

1, 1, 1, 2, 5, 14, 40, 127, 408, 1364, 4638, 16079, 56401, 200169, 716599, 2585833, 9392704, 34319666, 126046498, 465076159, 1723092407, 6407856762, 23910255143, 89493903437, 335912684824, 1264106399919, 4768447977465, 18027218146451
Offset: 0

Views

Author

Keywords

Programs

  • Mathematica
    A045629[n_] := If[n == 0, 1, (1/(2n)) DivisorSum[n, EulerPhi[n/#] Binomial[ 2#-1, #-1] + EulerPhi[2(n/#)] 2^(#-1)&]];
    a[n_] := If[n == 0, 1, Sum[MoebiusMu[n/d] A045629[d], {d, Divisors[n]}]];
    Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Aug 28 2019 *)

Formula

Moebius transform of A045629 (Christian Bower).

A115122 Number of imprimitive (periodic) 2n-bead black-white complementable necklaces with n black beads.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 4, 1, 7, 3, 16, 1, 49, 1, 129, 17, 415, 1, 1408, 1, 4659, 130, 16081, 1, 56858, 15, 200171, 1367, 716733, 1, 2590529, 1, 9393119, 16082, 34319668, 142, 126104312, 1, 465076161, 200172, 1723097474, 1, 6408573532, 1, 23910271229, 2587214, 89493903439
Offset: 0

Views

Author

Valery A. Liskovets, Jan 17 2006

Keywords

Comments

a(p)=1 for prime p.

Programs

  • Mathematica
    A045629[n_] := If[n==0, 1, (1/(2n)) DivisorSum[n, EulerPhi[n/#] Binomial[ 2 # - 1, # - 1] + EulerPhi[2 (n/#)] 2^(# - 1)&]];
    A045632[n_] := If[n==0, 1, Sum[MoebiusMu[n/d] A045629[d], {d, Divisors[n]}]];
    a[n_] := A045629[n] - A045632[n];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Aug 28 2019 *)

Formula

a(n)=A045629(n) - A045632(n).

Extensions

More terms from Jean-François Alcover, Aug 28 2019
Showing 1-4 of 4 results.