cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045649 Number of chiral n-ominoes in n-1 space.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 5, 9, 15, 31, 70, 146, 300, 656, 1471, 3258, 7245, 16400, 37461, 85773, 197365, 457297, 1065070, 2489750, 5842741, 13766775, 32552087, 77208432, 183670145, 438176307, 1048092760, 2513081101
Offset: 1

Views

Author

Keywords

Comments

Lunnon's DR(n,n-1)-DE(n,n-1). Knuth describes methodology for a similar enumeration, that of free trees with n nodes.

References

  • D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, pp. 386-88.

Crossrefs

Programs

  • Mathematica
    s[ n_, k_ ] := s[ n, k ]=c[ n+1-k ]+If[ n<2k, 0, s[ n-k, k ](-1)^k ]; c[ 1 ]=1; c[ n_ ] := c[ n ]=Sum[ c[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ c[ i ]-Sum[ c[ j ]c[ i-j ], {j, 1, i/2} ]+If[ OddQ[ i ], 0, c[ i/2 ](c[ i/2 ]+(-1)^(i/2))/2 ], {i, 1, 33} ]

Formula

G.f.: C(x)-C^2(x)/2+C(-x^2)/2 where C(x) is g.f. for same sequence with one cell labeled, A045648.
a(n) ~ c * d^n / n^(5/2), where d = 2.58968405406171542574769690513208346256... and c = 0.36257350770010314582973624284... . - Vaclav Kotesovec, Feb 29 2016