cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A045648 Number of chiral n-ominoes in (n-1)-space, one cell labeled.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 34, 75, 166, 370, 841, 1937, 4488, 10470, 24617, 58237, 138435, 330563, 792745, 1908379, 4609434, 11167781, 27134824, 66102921, 161417867, 395042562, 968791315, 2380383481, 5859176855, 14446043494, 35672895787, 88219204394, 218466647493
Offset: 1

Views

Author

Keywords

Comments

Needed for generating chiral n-ominoes in (n-1)-space with no cells labeled, Lunnon's DR(n, n-1) - DE(n, n-1). Knuth describes a method for a similar enumeration, that of free trees with n nodes.
Euler transform of a(n) - if(n%4!=2, 0, a(n/2)) is sequence itself with offset 0.

References

  • D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, pp. 386-388.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(d*(a(d)-
          `if`(irem(d, 4)=2, a(d/2), 0)), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> b(n-1):
    seq(a(n), n=1..40);  # Alois P. Heinz, Feb 24 2015
  • Mathematica
    s[ n_, k_ ] := s[ n, k ]=c[ n+1-k ]+If[ n<2k, 0, s[ n-k, k ](-1)^k ]; c[ 1 ]=1; c[ n_ ] := c[ n ]=Sum[ c[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ c[ i ], {i, 1, 30} ]
  • PARI
    {a(n)=local(A=x); if(n<1, 0, for(k=1, n-1, A/=(1-(-x)^k+x*O(x^n))^((-1)^k*polcoeff(A, k))); polcoeff(A, n))} /* Michael Somos, Dec 16 2002 */

Formula

G.f.: A(x) = x exp(A(x) + A(-x^2)/2 + A(x^3)/3 + A(-x^4)/4 + ...).
Also A(x) = Sum_{n >= 1} a(n)*x^n = x / Product_{n >= 1} (1-(-x)^n)^((-1)^n*a(n)).
G.f.: x*Product_{n>0} (1-x^(4n-2))^a(2n-1)/(1-x^n)^a(n).
a(n) ~ c * d^n / n^(3/2), where d = 2.58968405406171542574769690513208346256... and c = 0.386431095907583923297618874742... . - Vaclav Kotesovec, Feb 29 2016

A195738 Triangle read by rows: DR(n,d) is the number of properly d-dimensional polyominoes with n cells, modulo translations and rotations (n >= 1, 0 <= d <= n-1).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 6, 3, 0, 1, 17, 17, 4, 0, 1, 59, 131, 52, 7, 0, 1, 195, 915, 709, 153, 13, 0, 1, 703, 6553, 8946, 3350, 454, 28
Offset: 1

Views

Author

N. J. A. Sloane, Sep 22 2011

Keywords

Comments

From Petros Hadjicostas, Jan 11 2019: (Start)
Table 1 (p. 366) in Lunnon (1975) contains more terms. Because the table there (in the reference) has incomplete columns, the extra terms do not appear in this triangular sequence (array).
Entry DR(n=11, d=2) in Table 1 (p. 366) must be a typo. It should not be 33890, but 33895. This was corrected by N. J. A. Sloane in 2011 in the documentation of sequence A006758. (See also sequence A000988.)
(End)
The number of oriented polyominoes (chiral pairs counted as two) here is the sum of the number of unoriented polyominoes (chiral pairs counted as one) in A049430 and the number of chiral pairs. - Robert A. Russell, May 03 2020

Examples

			Triangle begins:
n\d| 0    1    2    3    4    5    6    7
---+---------------------------------=---
1  | 1
2  | 0    1
3  | 0    1    1
4  | 0    1    6    3
5  | 0    1   17   17    4
6  | 0    1   59  131   52    7
7  | 0    1  195  915  709  153   13
8  | 0    1  703 6553 8946 3350  454   28
...
		

Crossrefs

Formula

From Robert A. Russell, May 03 2020: (Start)
For n > 1, DR(n,n-1) = A000055(n) + A045649(n).
DR(n,n-2) = A036364(n) + A036365(n).
We can add unoriented and chiral pairs for the top two diagonals. The summands have quick algorithms. (End)

Extensions

Sequence corrected by Petros Hadjicostas, Jan 11 2019 after observation by Jon E. Schoenfield

A355049 Number of chiral pairs of orthoplex n-ominoes with cell centers determining n-3 space.

Original entry on oeis.org

8, 76, 440, 2019, 8147, 30367, 107061, 361655, 1181761, 3762817, 11733393, 35957132, 108591703, 323914688, 955984083, 2795513143, 8108894051, 23354358683, 66838785954, 190211189706, 538567451991, 1517943035326
Offset: 7

Views

Author

Robert A. Russell, Jun 16 2022

Keywords

Comments

Orthoplex polyominoes are connected sets of cells of regular tilings with Schläfli symbols {}, {4}, {3,4}, {3,3,4}, {3,3,3,4}, etc. These are tilings of regular orthoplexes projected on their circumspheres. Orthoplex polyominoes are equivalent to multidimensional polyominoes that do not extend more than two units along any axis, i.e., fit within a 2^d cube. Each member of a chiral pair is a reflection but not a rotation of the other.

Examples

			a(7)=8 because there are 8 pairs of chiral heptominoes in 2^4 space. See trunks 1, 6, 8, 12, 13, 19, 27, and 28 in the linked Trunk Generating Functions.
		

Crossrefs

Cf. A355047 (oriented), A355048 (unoriented), A355050 (achiral) A355051 (asymmetric), A045648 (rooted chiral).
Other dimensions: A036368 (n-2), A045649 (n-1), A355054 (multidimensional).

Programs

  • Mathematica
    sc[n_,k_] := sc[n,k] = c[n+1-k,1] + If[n<2k, 0, sc[n-k,k](-1)^k];
    c[1,1] := 1; c[n_,1] := c[n,1] = Sum[c[i,1] sc[n-1,i]i, {i,1,n-1}]/(n-1);
    c[n_,k_] := c[n, k] = Sum[c[i, 1] c[n-i, k-1], {i,1,n-1}];
    nmax = 30; K[x_] := Sum[c[i,1] x^i, {i,0,nmax}]
    Drop[CoefficientList[Series[(14 K[x]^6 + 3 K[x]^7 + 6 K[x]^4 K[-x^2] + 6 K[x]^5 K[-x^2] - 18 K[x]^2 K[-x^2]^2 + 3 K[x]^3 K[-x^2]^2 - 10 K[-x^2]^3 - 6 K[x] K[-x^2]^3 + 4 K[x^3]^2 - 6 K[x] K[-x^2] K[-x^4] + 4 K[-x^6]) / 24 + K[x]^3 (38 K[x]^4 + 9 K[x]^5 + 4 K[x]^2 K[-x^2] + 10 K[x]^3 K[-x^2] - 2 K[-x^2]^2 + K[x] K[-x^2]^2) / (8(1-K[x])) + K[x]^6 (5 K[x] + 16 K[x]^2 + 6 K[x]^3 + K[-x^2] + 2 K[x] K[-x^2]) / (2(1-K[x])^2) - K[-x^2]^2 (K[x]^4 + 2 K[x] K[-x^2] + 4 K[x]^2 K[-x^2] + 2 K[-x^2]^2 + 5 K[x] K[-x^2]^2 + K[-x^4] + K[x] K[-x^4]) / (4(1-K[-x^2])) + K[x]^7 (2 + 42 K[x] + 51 K[x]^2 + 24 K[x]^3 + 3 K[-x^2]) / (12(1-K[x])^3) + (K[x] K[x^3]^2) / (3(1-K[x^3])) - K[x]^2 K[-x^2]^2 (2 K[x] + 5 K[x]^3 + 2 K[-x^2] + K[x] K[-x^2]) / (4(1-K[x]) (1-K[-x^2])) - K[-x^2]^4 (8 + K[x] + 8 K[x] K[-x^2]) / (8(1-K[-x^2])^2) + K[x]^9 (17 + 8 K[x]) / (8(1-K[x])^4) - K[x]^5 (1 + 4 K[x]) K[-x^2]^2 / (4(1-K[x])^2 (1-K[-x^2])) + (K[x] K[-x^4]^2) / (4(1-K[-x^4])) + (3 K[x]^10) / (8(1-K[x])^5) - ((K[x]^6 K[-x^2]^2) / (4(1-K[x])^3 (1-K[-x^2]))) - (((1 + K[x]) K[-x^2]^5) / (4(1-K[-x^2])^3)) + ((1 + K[x]) K[-x^2] K[-x^4]^2) / (4(1-K[-x^2]) (1-K[-x^4])) - ((K[x]^2 K[-x^2]^4) / (8(1-K[x]) (1-K[-x^2])^2)), {x,0,nmax}], x], 7]

Formula

a(n) = A355047(n) - A355048(n) = (A355047(n) - A355050(n)) / 2 = A355048(n) - A355050(n).
G.f.: (14 C(x)^6 + 3 C(x)^7 + 6 C(x)^4 C(-x^2) + 6 C(x)^5 C(-x^2) - 18 C(x)^2 C(-x^2)^2 + 3 C(x)^3 C(-x^2)^2 - 10 C(-x^2)^3 - 6 C(x) C(-x^2)^3 + 4 C(x^3)^2 - 6 C(x) C(-x^2) C(-x^4) + 4 C(-x^6)) / 24 + C(x)^3 (38 C(x)^4 + 9 C(x)^5 + 4 C(x)^2 C(-x^2) + 10 C(x)^3 C(-x^2) - 2 C(-x^2)^2 + C(x) C(-x^2)^2) / (8(1-C(x))) + C(x)^6 (5 C(x) + 16 C(x)^2 + 6 C(x)^3 + C(-x^2) + 2 C(x) C(-x^2)) / (2(1-C(x))^2) - C(-x^2)^2 (C(x)^4 + 2 C(x) C(-x^2) + 4 C(x)^2 C(-x^2) + 2 C(-x^2)^2 + 5 C(x) C(-x^2)^2 + C(-x^4) + C(x) C(-x^4)) / (4(1-C(-x^2))) + C(x)^7 (2 + 42 C(x) + 51 C(x)^2 + 24 C(x)^3 + 3 C(-x^2)) / (12(1-C(x))^3) + (C(x) C(x^3)^2) / (3(1-C(x^3))) - C(x)^2 C(-x^2)^2 (2 C(x) + 5 C(x)^3 + 2 C(-x^2) + C(x) C(-x^2)) / (4(1-C(x)) (1-C(-x^2))) - C(-x^2)^4 (8 + C(x) + 8 C(x) C(-x^2)) / (8(1-C(-x^2))^2) + C(x)^9 (17 + 8 C(x)) / (8(1-C(x))^4) - C(x)^5 (1 + 4 C(x)) C(-x^2)^2 / (4(1-C(x))^2 (1-C(-x^2))) + (C(x) C(-x^4)^2) / (4(1-C(-x^4))) + (3 C(x)^10) / (8(1-C(x))^5) - ((C(x)^6 C(-x^2)^2) / (4(1-C(x))^3 (1-C(-x^2)))) - (((1 + C(x)) C(-x^2)^5) / (4(1-C(-x^2))^3)) + ((1 + C(x)) C(-x^2) C(-x^4)^2) / (4(1-C(-x^2)) (1-C(-x^4))) - ((C(x)^2 C(-x^2)^4) / (8(1-C(x)) (1-C(-x^2))^2)) where C(x) is the generating function for chiral n-ominoes in n-1 space, one cell labeled in A045648.

A355054 Number of chiral pairs of multidimensional n-ominoes with cell centers determining n-3 space.

Original entry on oeis.org

6, 54, 297, 1341, 5468, 20519, 72168, 242886, 791780, 2514453, 7814225, 23863941, 71835845, 213601046, 628450974, 1832227629, 5299559865, 15221688836, 43450246045, 123345029035, 348417524877, 979803281560
Offset: 5

Views

Author

Robert A. Russell, Jun 16 2022

Keywords

Comments

Multidimensional polyominoes are connected sets of cells of regular tilings with Schläfli symbols {oo}, {4,4}, {4,3,4}, {4,3,3,4}, etc. Each tile is a regular orthotope (hypercube). Each member of a chiral pair is a reflection but not a rotation of the other.

Examples

			a(5)=6 because there are 6 chiral pairs of pentominoes in 2-space.
		

Crossrefs

Cf. A355052 (oriented), A355053 (unoriented), A355055 (achiral) A355056 (asymmetric), A191092 (fixed), A045648 (rooted chiral), A195738 (Lunnon's DR), A049430 (Lunnon's DE).
Other dimensions: A036365 (n-2), A045649 (n-1), A355049 (orthoplex).

Programs

  • Mathematica
    sc[n_,k_] := sc[n,k] = c[n+1-k,1] + If[n<2k, 0, sc[n-k,k](-1)^k];
    c[1,1] := 1; c[n_,1] := c[n,1] = Sum[c[i,1] sc[n-1,i]i, {i,1,n-1}]/(n-1);
    c[n_,k_] := c[n, k] = Sum[c[i, 1] c[n-i, k-1], {i,1,n-1}];
    nmax = 30; K[x_] := Sum[c[i,1] x^i, {i,0,nmax}]
    Drop[CoefficientList[Series[(12 K[x]^4 + 87 K[x]^5 + 50 K[x]^6 + 3 K[x]^7 + 18 K[x]^3 K[-x^2] + 36 K[x]^4 K[-x^2] + 6 K[x]^5 K[-x^2] - 12 K[-x^2]^2 - 27 K[x] K[-x^2]^2 - 6 K[x]^2 K[-x^2]^2 + 3 K[x]^3 K[-x^2]^2 - 16 K[-x^2]^3 - 6 K[x] K[-x^2]^3 + 4 K[x^3]^2 - 6 K[x] K[-x^4] - 6 K[x] K[-x^2] K[-x^4] + 4 K[-x^6]) / 24 + K[x]^2 (16 K[x]^3 + 159 K[x]^4 + 112 K[x]^5 + 9 K[x]^6 + 14 K[x]^2 K[-x^2] + 32 K[x]^3 K[-x^2] + 10 K[x]^4 K[-x^2] - K[-x^2]^2 + K[x]^2 K[-x^2]^2) / (8 (1-K[x])) + K[x]^5 (2 K[x] + 67 K[x]^2 + 46 K[x]^3 + 6 K[x]^4 + 3 K[-x^2] + 6 K[x] K[-x^2] + 2 K[x]^2 K[-x^2]) / (2 (1-K[x])^2) - K[-x^2] (2 K[x]^2 K[-x^2] + 7 K[-x^2]^2 + 17 K[x] K[-x^2]^2 + 2 K[x]^2 K[-x^2]^2 + 7 K[-x^2]^3 + 5 K[x] K[-x^2]^3 + K[-x^4] + K[x] K[-x^4] + K[-x^2] K[-x^4] + K[x] K[-x^2] K[-x^4]) / (4 (1-K[-x^2])) + K[x]^6 (4 K[x] + 153 K[x]^2 + 75 K[x]^3 + 12 K[x]^4 + 3 K[-x^2] + 3 K[x] K[-x^2]) / (6 (1-K[x])^3) - K[x]^2 K[-x^2]^2 (K[x] + K[-x^2]) / ((1-K[x]) (1-K[-x^2])) + (K[x] K[x^3]^2) / (3 (1-K[x^3])) + K[x]^9 (21 + 4 K[x]) / (2 (1-K[x])^4) - K[-x^2]^4 (6 + 7 K[x] + 2 K[-x^2] + 2 K[x] K[-x^2]) / (2 (1-K[-x^2])^2) + 3 K[x]^10 / (2 (1-K[x])^5) - K[x]^2 K[-x^2]^4 / (2 (1-K[x]) (1-K[-x^2])^2) - (1 + K[x]) K[-x^2]^5 / (1-K[-x^2])^3, {x,0,nmax}], x], 5]

Formula

a(n) = A355052(n) - A355053(n) = (A355052(n) - A355055(n)) / 2 = A355053(n) - A355055(n).
a(n) = A195738(n,n-3) - A049430(n,n-3), diagonals of Lunnon's DR and DE arrays.
G.f.: (12 C(x)^4 + 87 C(x)^5 + 50 C(x)^6 + 3 C(x)^7 + 18 C(x)^3 C(-x^2) + 36 C(x)^4 C(-x^2) + 6 C(x)^5 C(-x^2) - 12 C(-x^2)^2 - 27 C(x) C(-x^2)^2 - 6 C(x)^2 C(-x^2)^2 + 3 C(x)^3 C(-x^2)^2 - 16 C(-x^2)^3 - 6 C(x) C(-x^2)^3 + 4 C(x^3)^2 - 6 C(x) C(-x^4) - 6 C(x) C(-x^2) C(-x^4) + 4 C(-x^6)) / 24 + C(x)^2 (16 C(x)^3 + 159 C(x)^4 + 112 C(x)^5 + 9 C(x)^6 + 14 C(x)^2 C(-x^2) + 32 C(x)^3 C(-x^2) + 10 C(x)^4 C(-x^2) - C(-x^2)^2 + C(x)^2 C(-x^2)^2) / (8 (1-C(x))) + C(x)^5 (2 C(x) + 67 C(x)^2 + 46 C(x)^3 + 6 C(x)^4 + 3 C(-x^2) + 6 C(x) C(-x^2) + 2 C(x)^2 C(-x^2)) / (2 (1-C(x))^2) - C(-x^2) (2 C(x)^2 C(-x^2) + 7 C(-x^2)^2 + 17 C(x) C(-x^2)^2 + 2 C(x)^2 C(-x^2)^2 + 7 C(-x^2)^3 + 5 C(x) C(-x^2)^3 + C(-x^4) + C(x) C(-x^4) + C(-x^2) C(-x^4) + C(x) C(-x^2) C(-x^4)) / (4 (1-C(-x^2))) + C(x)^6 (4 C(x) + 153 C(x)^2 + 75 C(x)^3 + 12 C(x)^4 + 3 C(-x^2) + 3 C(x) C(-x^2)) / (6 (1-C(x))^3) - C(x)^2 C(-x^2)^2 (C(x) + C(-x^2)) / ((1-C(x)) (1-C(-x^2))) + (C(x) C(x^3)^2) / (3 (1-C(x^3))) + C(x)^9 (21 + 4 C(x)) / (2 (1-C(x))^4) - C(-x^2)^4 (6 + 7 C(x) + 2 C(-x^2) + 2 C(x) C(-x^2)) / (2 (1-C(-x^2))^2) + 3 C(x)^10 / (2 (1-C(x))^5) - C(x)^2 C(-x^2)^4 / (2 (1-C(x)) (1-C(-x^2))^2) - (1 + C(x)) C(-x^2)^5 / (1-C(-x^2))^3 where C(x) is the generating function for chiral n-ominoes in n-1 space, one cell labeled in A045648.

A036365 Number of chiral n-ominoes in n-2 space.

Original entry on oeis.org

0, 2, 6, 17, 49, 135, 361, 951, 2493, 6497, 16837, 43498, 112164, 288741, 742294, 1906552, 4893835, 12555662, 32201344, 82566738, 211675672, 542621858, 1390929877, 3565435302, 9139718572, 23430209922, 60069035611, 154014868677
Offset: 3

Views

Author

Keywords

Comments

a(n) is Lunnon's DR(n,n-2) - DE(n,n-2).

Examples

			0 chiral trominoes in 1-space;
2 pairs of chiral tetrominoes (L,S) in 2-space;
6 pairs of chiral pentominoes in 3-space.
		

Crossrefs

Programs

  • Mathematica
    sc[ n_, k_ ] := sc[ n, k ]=c[ n+1-k, 1 ]+If[ n<2k, 0, sc[ n-k, k ](-1)^k ]; c[ 1, 1 ] := 1;
    c[ n_, 1 ] := c[ n, 1 ]=Sum[ c[ i, 1 ]sc[ n-1, i ]i, {i, 1, n-1} ]/(n-1);
    c[ n_, k_ ] := c[ n, k ]=Sum[ c[ i, 1 ]c[ n-i, k-1 ], {i, 1, n-1} ];
    Table[ c[ i, 3 ]/2+5c[ i, 4 ]/8+Sum[ c[ i, j ], {j, 5, i} ]+If[ OddQ[ i ], 0,
    3c[ i/2, 2 ](-1)^(i/2)/8-If[ OddQ[ i/2 ], 0, c[ i/4, 1 ](-1)^(i/4)/4 ] ]
    +Sum[ c[ j, 1 ](c[ i-2j, 1 ]/2+c[ i-2j, 2 ]/4)(-1)^j, {j, 1, (i-1)/2} ], {i, 3, 30} ]

Formula

G.f.: C^3(x)/2 + C(x)C(-x^2)/2 + 5C^4(x)/8 + C^2(x)C(-x^2)/4 + 3C^2(-x^2)/8 - C(-x^4)/4 + C^5(x)/(1-C(x)), where C(x) is the generating function for chiral n-ominoes in n-1 space, one cell labeled (that is, C(x) is the g.f. of the sequence A045648).
Showing 1-5 of 5 results.