cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A049075 Eigensequence of a power series transformation.

Original entry on oeis.org

1, 1, 2, 4, 8, 18, 43, 102, 247, 617, 1564, 4003, 10355, 27051, 71225, 188743, 503111, 1348301, 3630294, 9815159, 26637436, 72540432, 198162708, 542875096, 1491126550, 4105602719, 11329408543, 31328137525, 86795258650, 240898943969, 669730499207, 1864855943748
Offset: 1

Views

Author

Michael Somos, Aug 08 1999

Keywords

Comments

Euler transform of a(n) - if( n%4, 0, a(n/2)) is sequence itself with offset 0.

Examples

			x + x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 18*x^6 + 43*x^7 + 102*x^8 + 247*x^9 + 617*x^10 + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1 else (add(d*p(d), d=divisors(n)) +add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n-1))/n fi end end: b:= etr(n-> a(n) -`if`(modp(n,4)<>0, 0,a(n/2))): a:= n-> b(n-1): seq(a(n), n=1..40);  # Alois P. Heinz, Sep 06 2008
  • Mathematica
    s[ n_, k_ ] := s[ n, k ]=a[ n+1-k ]+If[ n<2k, 0, -s[ n-k, k ](-1)^k ]; a[ 1 ]=1; a[ n_ ] := a[ n ]=Sum[ a[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ a[ i ], {i, 1, 30} ]
  • PARI
    {a(n) = local(A=x); if( n<1, 0, for( k=1, n-1, A *= (1 + (-x)^k + x*O(x^n))^((-1)^k * polcoeff(A, k))); polcoeff(A, n))}

Formula

G.f.: A(x) = x exp(A(x) - A(-x^2)/2 + A(x^3)/3 - A(-x^4)/4 + ...). Also A(x) = Sum_{n >= 1} a(n)*x^n = x * Product_{n >= 1} (1+(-x)^n)^((-1)^n*a(n)).
G.f.: x prod_{n>0} (1-x^(4n))^a(2n)/(1-x^n)^a(n).
a(n) ~ c * d^n / n^(3/2), where d = 2.92045137601697174071599643..., c = 0.4299447159290328896620383... . - Vaclav Kotesovec, Aug 25 2014

A355049 Number of chiral pairs of orthoplex n-ominoes with cell centers determining n-3 space.

Original entry on oeis.org

8, 76, 440, 2019, 8147, 30367, 107061, 361655, 1181761, 3762817, 11733393, 35957132, 108591703, 323914688, 955984083, 2795513143, 8108894051, 23354358683, 66838785954, 190211189706, 538567451991, 1517943035326
Offset: 7

Views

Author

Robert A. Russell, Jun 16 2022

Keywords

Comments

Orthoplex polyominoes are connected sets of cells of regular tilings with Schläfli symbols {}, {4}, {3,4}, {3,3,4}, {3,3,3,4}, etc. These are tilings of regular orthoplexes projected on their circumspheres. Orthoplex polyominoes are equivalent to multidimensional polyominoes that do not extend more than two units along any axis, i.e., fit within a 2^d cube. Each member of a chiral pair is a reflection but not a rotation of the other.

Examples

			a(7)=8 because there are 8 pairs of chiral heptominoes in 2^4 space. See trunks 1, 6, 8, 12, 13, 19, 27, and 28 in the linked Trunk Generating Functions.
		

Crossrefs

Cf. A355047 (oriented), A355048 (unoriented), A355050 (achiral) A355051 (asymmetric), A045648 (rooted chiral).
Other dimensions: A036368 (n-2), A045649 (n-1), A355054 (multidimensional).

Programs

  • Mathematica
    sc[n_,k_] := sc[n,k] = c[n+1-k,1] + If[n<2k, 0, sc[n-k,k](-1)^k];
    c[1,1] := 1; c[n_,1] := c[n,1] = Sum[c[i,1] sc[n-1,i]i, {i,1,n-1}]/(n-1);
    c[n_,k_] := c[n, k] = Sum[c[i, 1] c[n-i, k-1], {i,1,n-1}];
    nmax = 30; K[x_] := Sum[c[i,1] x^i, {i,0,nmax}]
    Drop[CoefficientList[Series[(14 K[x]^6 + 3 K[x]^7 + 6 K[x]^4 K[-x^2] + 6 K[x]^5 K[-x^2] - 18 K[x]^2 K[-x^2]^2 + 3 K[x]^3 K[-x^2]^2 - 10 K[-x^2]^3 - 6 K[x] K[-x^2]^3 + 4 K[x^3]^2 - 6 K[x] K[-x^2] K[-x^4] + 4 K[-x^6]) / 24 + K[x]^3 (38 K[x]^4 + 9 K[x]^5 + 4 K[x]^2 K[-x^2] + 10 K[x]^3 K[-x^2] - 2 K[-x^2]^2 + K[x] K[-x^2]^2) / (8(1-K[x])) + K[x]^6 (5 K[x] + 16 K[x]^2 + 6 K[x]^3 + K[-x^2] + 2 K[x] K[-x^2]) / (2(1-K[x])^2) - K[-x^2]^2 (K[x]^4 + 2 K[x] K[-x^2] + 4 K[x]^2 K[-x^2] + 2 K[-x^2]^2 + 5 K[x] K[-x^2]^2 + K[-x^4] + K[x] K[-x^4]) / (4(1-K[-x^2])) + K[x]^7 (2 + 42 K[x] + 51 K[x]^2 + 24 K[x]^3 + 3 K[-x^2]) / (12(1-K[x])^3) + (K[x] K[x^3]^2) / (3(1-K[x^3])) - K[x]^2 K[-x^2]^2 (2 K[x] + 5 K[x]^3 + 2 K[-x^2] + K[x] K[-x^2]) / (4(1-K[x]) (1-K[-x^2])) - K[-x^2]^4 (8 + K[x] + 8 K[x] K[-x^2]) / (8(1-K[-x^2])^2) + K[x]^9 (17 + 8 K[x]) / (8(1-K[x])^4) - K[x]^5 (1 + 4 K[x]) K[-x^2]^2 / (4(1-K[x])^2 (1-K[-x^2])) + (K[x] K[-x^4]^2) / (4(1-K[-x^4])) + (3 K[x]^10) / (8(1-K[x])^5) - ((K[x]^6 K[-x^2]^2) / (4(1-K[x])^3 (1-K[-x^2]))) - (((1 + K[x]) K[-x^2]^5) / (4(1-K[-x^2])^3)) + ((1 + K[x]) K[-x^2] K[-x^4]^2) / (4(1-K[-x^2]) (1-K[-x^4])) - ((K[x]^2 K[-x^2]^4) / (8(1-K[x]) (1-K[-x^2])^2)), {x,0,nmax}], x], 7]

Formula

a(n) = A355047(n) - A355048(n) = (A355047(n) - A355050(n)) / 2 = A355048(n) - A355050(n).
G.f.: (14 C(x)^6 + 3 C(x)^7 + 6 C(x)^4 C(-x^2) + 6 C(x)^5 C(-x^2) - 18 C(x)^2 C(-x^2)^2 + 3 C(x)^3 C(-x^2)^2 - 10 C(-x^2)^3 - 6 C(x) C(-x^2)^3 + 4 C(x^3)^2 - 6 C(x) C(-x^2) C(-x^4) + 4 C(-x^6)) / 24 + C(x)^3 (38 C(x)^4 + 9 C(x)^5 + 4 C(x)^2 C(-x^2) + 10 C(x)^3 C(-x^2) - 2 C(-x^2)^2 + C(x) C(-x^2)^2) / (8(1-C(x))) + C(x)^6 (5 C(x) + 16 C(x)^2 + 6 C(x)^3 + C(-x^2) + 2 C(x) C(-x^2)) / (2(1-C(x))^2) - C(-x^2)^2 (C(x)^4 + 2 C(x) C(-x^2) + 4 C(x)^2 C(-x^2) + 2 C(-x^2)^2 + 5 C(x) C(-x^2)^2 + C(-x^4) + C(x) C(-x^4)) / (4(1-C(-x^2))) + C(x)^7 (2 + 42 C(x) + 51 C(x)^2 + 24 C(x)^3 + 3 C(-x^2)) / (12(1-C(x))^3) + (C(x) C(x^3)^2) / (3(1-C(x^3))) - C(x)^2 C(-x^2)^2 (2 C(x) + 5 C(x)^3 + 2 C(-x^2) + C(x) C(-x^2)) / (4(1-C(x)) (1-C(-x^2))) - C(-x^2)^4 (8 + C(x) + 8 C(x) C(-x^2)) / (8(1-C(-x^2))^2) + C(x)^9 (17 + 8 C(x)) / (8(1-C(x))^4) - C(x)^5 (1 + 4 C(x)) C(-x^2)^2 / (4(1-C(x))^2 (1-C(-x^2))) + (C(x) C(-x^4)^2) / (4(1-C(-x^4))) + (3 C(x)^10) / (8(1-C(x))^5) - ((C(x)^6 C(-x^2)^2) / (4(1-C(x))^3 (1-C(-x^2)))) - (((1 + C(x)) C(-x^2)^5) / (4(1-C(-x^2))^3)) + ((1 + C(x)) C(-x^2) C(-x^4)^2) / (4(1-C(-x^2)) (1-C(-x^4))) - ((C(x)^2 C(-x^2)^4) / (8(1-C(x)) (1-C(-x^2))^2)) where C(x) is the generating function for chiral n-ominoes in n-1 space, one cell labeled in A045648.

A045649 Number of chiral n-ominoes in n-1 space.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 5, 9, 15, 31, 70, 146, 300, 656, 1471, 3258, 7245, 16400, 37461, 85773, 197365, 457297, 1065070, 2489750, 5842741, 13766775, 32552087, 77208432, 183670145, 438176307, 1048092760, 2513081101
Offset: 1

Views

Author

Keywords

Comments

Lunnon's DR(n,n-1)-DE(n,n-1). Knuth describes methodology for a similar enumeration, that of free trees with n nodes.

References

  • D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, pp. 386-88.

Crossrefs

Programs

  • Mathematica
    s[ n_, k_ ] := s[ n, k ]=c[ n+1-k ]+If[ n<2k, 0, s[ n-k, k ](-1)^k ]; c[ 1 ]=1; c[ n_ ] := c[ n ]=Sum[ c[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ c[ i ]-Sum[ c[ j ]c[ i-j ], {j, 1, i/2} ]+If[ OddQ[ i ], 0, c[ i/2 ](c[ i/2 ]+(-1)^(i/2))/2 ], {i, 1, 33} ]

Formula

G.f.: C(x)-C^2(x)/2+C(-x^2)/2 where C(x) is g.f. for same sequence with one cell labeled, A045648.
a(n) ~ c * d^n / n^(5/2), where d = 2.58968405406171542574769690513208346256... and c = 0.36257350770010314582973624284... . - Vaclav Kotesovec, Feb 29 2016

A355054 Number of chiral pairs of multidimensional n-ominoes with cell centers determining n-3 space.

Original entry on oeis.org

6, 54, 297, 1341, 5468, 20519, 72168, 242886, 791780, 2514453, 7814225, 23863941, 71835845, 213601046, 628450974, 1832227629, 5299559865, 15221688836, 43450246045, 123345029035, 348417524877, 979803281560
Offset: 5

Views

Author

Robert A. Russell, Jun 16 2022

Keywords

Comments

Multidimensional polyominoes are connected sets of cells of regular tilings with Schläfli symbols {oo}, {4,4}, {4,3,4}, {4,3,3,4}, etc. Each tile is a regular orthotope (hypercube). Each member of a chiral pair is a reflection but not a rotation of the other.

Examples

			a(5)=6 because there are 6 chiral pairs of pentominoes in 2-space.
		

Crossrefs

Cf. A355052 (oriented), A355053 (unoriented), A355055 (achiral) A355056 (asymmetric), A191092 (fixed), A045648 (rooted chiral), A195738 (Lunnon's DR), A049430 (Lunnon's DE).
Other dimensions: A036365 (n-2), A045649 (n-1), A355049 (orthoplex).

Programs

  • Mathematica
    sc[n_,k_] := sc[n,k] = c[n+1-k,1] + If[n<2k, 0, sc[n-k,k](-1)^k];
    c[1,1] := 1; c[n_,1] := c[n,1] = Sum[c[i,1] sc[n-1,i]i, {i,1,n-1}]/(n-1);
    c[n_,k_] := c[n, k] = Sum[c[i, 1] c[n-i, k-1], {i,1,n-1}];
    nmax = 30; K[x_] := Sum[c[i,1] x^i, {i,0,nmax}]
    Drop[CoefficientList[Series[(12 K[x]^4 + 87 K[x]^5 + 50 K[x]^6 + 3 K[x]^7 + 18 K[x]^3 K[-x^2] + 36 K[x]^4 K[-x^2] + 6 K[x]^5 K[-x^2] - 12 K[-x^2]^2 - 27 K[x] K[-x^2]^2 - 6 K[x]^2 K[-x^2]^2 + 3 K[x]^3 K[-x^2]^2 - 16 K[-x^2]^3 - 6 K[x] K[-x^2]^3 + 4 K[x^3]^2 - 6 K[x] K[-x^4] - 6 K[x] K[-x^2] K[-x^4] + 4 K[-x^6]) / 24 + K[x]^2 (16 K[x]^3 + 159 K[x]^4 + 112 K[x]^5 + 9 K[x]^6 + 14 K[x]^2 K[-x^2] + 32 K[x]^3 K[-x^2] + 10 K[x]^4 K[-x^2] - K[-x^2]^2 + K[x]^2 K[-x^2]^2) / (8 (1-K[x])) + K[x]^5 (2 K[x] + 67 K[x]^2 + 46 K[x]^3 + 6 K[x]^4 + 3 K[-x^2] + 6 K[x] K[-x^2] + 2 K[x]^2 K[-x^2]) / (2 (1-K[x])^2) - K[-x^2] (2 K[x]^2 K[-x^2] + 7 K[-x^2]^2 + 17 K[x] K[-x^2]^2 + 2 K[x]^2 K[-x^2]^2 + 7 K[-x^2]^3 + 5 K[x] K[-x^2]^3 + K[-x^4] + K[x] K[-x^4] + K[-x^2] K[-x^4] + K[x] K[-x^2] K[-x^4]) / (4 (1-K[-x^2])) + K[x]^6 (4 K[x] + 153 K[x]^2 + 75 K[x]^3 + 12 K[x]^4 + 3 K[-x^2] + 3 K[x] K[-x^2]) / (6 (1-K[x])^3) - K[x]^2 K[-x^2]^2 (K[x] + K[-x^2]) / ((1-K[x]) (1-K[-x^2])) + (K[x] K[x^3]^2) / (3 (1-K[x^3])) + K[x]^9 (21 + 4 K[x]) / (2 (1-K[x])^4) - K[-x^2]^4 (6 + 7 K[x] + 2 K[-x^2] + 2 K[x] K[-x^2]) / (2 (1-K[-x^2])^2) + 3 K[x]^10 / (2 (1-K[x])^5) - K[x]^2 K[-x^2]^4 / (2 (1-K[x]) (1-K[-x^2])^2) - (1 + K[x]) K[-x^2]^5 / (1-K[-x^2])^3, {x,0,nmax}], x], 5]

Formula

a(n) = A355052(n) - A355053(n) = (A355052(n) - A355055(n)) / 2 = A355053(n) - A355055(n).
a(n) = A195738(n,n-3) - A049430(n,n-3), diagonals of Lunnon's DR and DE arrays.
G.f.: (12 C(x)^4 + 87 C(x)^5 + 50 C(x)^6 + 3 C(x)^7 + 18 C(x)^3 C(-x^2) + 36 C(x)^4 C(-x^2) + 6 C(x)^5 C(-x^2) - 12 C(-x^2)^2 - 27 C(x) C(-x^2)^2 - 6 C(x)^2 C(-x^2)^2 + 3 C(x)^3 C(-x^2)^2 - 16 C(-x^2)^3 - 6 C(x) C(-x^2)^3 + 4 C(x^3)^2 - 6 C(x) C(-x^4) - 6 C(x) C(-x^2) C(-x^4) + 4 C(-x^6)) / 24 + C(x)^2 (16 C(x)^3 + 159 C(x)^4 + 112 C(x)^5 + 9 C(x)^6 + 14 C(x)^2 C(-x^2) + 32 C(x)^3 C(-x^2) + 10 C(x)^4 C(-x^2) - C(-x^2)^2 + C(x)^2 C(-x^2)^2) / (8 (1-C(x))) + C(x)^5 (2 C(x) + 67 C(x)^2 + 46 C(x)^3 + 6 C(x)^4 + 3 C(-x^2) + 6 C(x) C(-x^2) + 2 C(x)^2 C(-x^2)) / (2 (1-C(x))^2) - C(-x^2) (2 C(x)^2 C(-x^2) + 7 C(-x^2)^2 + 17 C(x) C(-x^2)^2 + 2 C(x)^2 C(-x^2)^2 + 7 C(-x^2)^3 + 5 C(x) C(-x^2)^3 + C(-x^4) + C(x) C(-x^4) + C(-x^2) C(-x^4) + C(x) C(-x^2) C(-x^4)) / (4 (1-C(-x^2))) + C(x)^6 (4 C(x) + 153 C(x)^2 + 75 C(x)^3 + 12 C(x)^4 + 3 C(-x^2) + 3 C(x) C(-x^2)) / (6 (1-C(x))^3) - C(x)^2 C(-x^2)^2 (C(x) + C(-x^2)) / ((1-C(x)) (1-C(-x^2))) + (C(x) C(x^3)^2) / (3 (1-C(x^3))) + C(x)^9 (21 + 4 C(x)) / (2 (1-C(x))^4) - C(-x^2)^4 (6 + 7 C(x) + 2 C(-x^2) + 2 C(x) C(-x^2)) / (2 (1-C(-x^2))^2) + 3 C(x)^10 / (2 (1-C(x))^5) - C(x)^2 C(-x^2)^4 / (2 (1-C(x)) (1-C(-x^2))^2) - (1 + C(x)) C(-x^2)^5 / (1-C(-x^2))^3 where C(x) is the generating function for chiral n-ominoes in n-1 space, one cell labeled in A045648.

A036365 Number of chiral n-ominoes in n-2 space.

Original entry on oeis.org

0, 2, 6, 17, 49, 135, 361, 951, 2493, 6497, 16837, 43498, 112164, 288741, 742294, 1906552, 4893835, 12555662, 32201344, 82566738, 211675672, 542621858, 1390929877, 3565435302, 9139718572, 23430209922, 60069035611, 154014868677
Offset: 3

Views

Author

Keywords

Comments

a(n) is Lunnon's DR(n,n-2) - DE(n,n-2).

Examples

			0 chiral trominoes in 1-space;
2 pairs of chiral tetrominoes (L,S) in 2-space;
6 pairs of chiral pentominoes in 3-space.
		

Crossrefs

Programs

  • Mathematica
    sc[ n_, k_ ] := sc[ n, k ]=c[ n+1-k, 1 ]+If[ n<2k, 0, sc[ n-k, k ](-1)^k ]; c[ 1, 1 ] := 1;
    c[ n_, 1 ] := c[ n, 1 ]=Sum[ c[ i, 1 ]sc[ n-1, i ]i, {i, 1, n-1} ]/(n-1);
    c[ n_, k_ ] := c[ n, k ]=Sum[ c[ i, 1 ]c[ n-i, k-1 ], {i, 1, n-1} ];
    Table[ c[ i, 3 ]/2+5c[ i, 4 ]/8+Sum[ c[ i, j ], {j, 5, i} ]+If[ OddQ[ i ], 0,
    3c[ i/2, 2 ](-1)^(i/2)/8-If[ OddQ[ i/2 ], 0, c[ i/4, 1 ](-1)^(i/4)/4 ] ]
    +Sum[ c[ j, 1 ](c[ i-2j, 1 ]/2+c[ i-2j, 2 ]/4)(-1)^j, {j, 1, (i-1)/2} ], {i, 3, 30} ]

Formula

G.f.: C^3(x)/2 + C(x)C(-x^2)/2 + 5C^4(x)/8 + C^2(x)C(-x^2)/4 + 3C^2(-x^2)/8 - C(-x^4)/4 + C^5(x)/(1-C(x)), where C(x) is the generating function for chiral n-ominoes in n-1 space, one cell labeled (that is, C(x) is the g.f. of the sequence A045648).

A306768 G.f. A(x) satisfies: A(x) = x*exp(-A(-x) + A(-x^2)/2 - A(-x^3)/3 + A(-x^4)/4 - A(-x^5)/5 + ...).

Original entry on oeis.org

0, 1, 1, -1, -2, 2, 6, -5, -18, 15, 59, -54, -215, 199, 813, -744, -3135, 2890, 12394, -11538, -50017, 46806, 204893, -192451, -849681, 800974, 3560927, -3367656, -15058478, 14279426, 64171736, -60992032, -275304665, 262199050, 1188070488, -1133572891, -5153913606
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 14 2019

Keywords

Examples

			G.f.: A(x) = x + x^2 - x^3 - 2*x^4 + 2*x^5 + 6*x^6 - 5*x^7 - 18*x^8 + 15*x^9 + 59*x^10 - 54*x^11 - 215*x^12 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 36; A[] = 0; Do[A[x] = x Exp[Sum[(-1)^k A[-x^k]/k, {k, 1, terms}]] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = SeriesCoefficient[x Product[1/(1 + x^k)^((-1)^k a[k]), {k, 1, n - 1}], {x, 0, n}]; a[0] = 0; Table[a[n], {n, 0, 36}]

Formula

G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * Product_{n>=1} 1/(1 + x^n)^((-1)^n*a(n)).
Recurrence: a(n+1) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+d)*d*a(d) ) * a(n-k+1).

A307365 G.f. A(x) satisfies: A(x) = x*exp(A(-x) + A(-x^2)/2 + A(-x^3)/3 + A(-x^4)/4 + ...).

Original entry on oeis.org

0, 1, -1, -1, 2, 1, -4, -3, 11, 10, -36, -32, 122, 105, -420, -368, 1497, 1336, -5491, -4919, 20477, 18393, -77397, -69883, 296306, 268711, -1146538, -1042924, 4475265, 4081598, -17600475, -16091719, 69681964, 63845971, -277494594, -254730047, 1110782803, 1021361912
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 05 2019

Keywords

Examples

			G.f.: A(x) = x - x^2 - x^3 + 2*x^4 + x^5 - 4*x^6 - 3*x^7 + 11*x^8 + 10*x^9 - 36*x^10 - 32*x^11 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 37; A[] = 0; Do[A[x] = x Exp[Sum[A[-x^k]/k, {k, 1, terms}]] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = SeriesCoefficient[x Product[1/(1 - x^k)^((-1)^k a[k]), {k, 1, n - 1}], {x, 0, n}]; a[1] = 1; Table[a[n], {n, 0, 37}]

Formula

G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * Product_{n>=1} 1/(1 - x^n)^((-1)^n*a(n)).
Recurrence: a(n+1) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^d*d*a(d) ) * a(n-k+1).

A307366 G.f. A(x) satisfies: A(x) = x*exp(A(-x) - A(-x^2)/2 + A(-x^3)/3 - A(-x^4)/4 + ...).

Original entry on oeis.org

0, 1, -1, 0, 0, 1, -2, -1, 3, 3, -8, -5, 17, 15, -47, -35, 118, 91, -311, -240, 839, 660, -2314, -1809, 6417, 5035, -18002, -14177, 51016, 40322, -145784, -115402, 419197, 332457, -1212617, -963586, 3526976, 2807301, -10307097, -8215194, 30246994, 24139050, -89101081
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 05 2019

Keywords

Examples

			G.f.: A(x) = x - x^2 + x^5 - 2*x^6 - x^7 + 3*x^8 + 3*x^9 - 8*x^10 - 5*x^11 + 17*x^12 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 42; A[] = 0; Do[A[x] = x Exp[Sum[(-1)^(k + 1) A[-x^k]/k, {k, 1, terms}]] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = SeriesCoefficient[x Product[(1 + x^k)^((-1)^k a[k]), {k, 1, n - 1}], {x, 0, n}]; a[1] = 1; Table[a[n], {n, 0, 42}]

Formula

G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * Product_{n>=1} (1 + x^n)^((-1)^n*a(n)).
Recurrence: a(n+1) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+d+1)*d*a(d) ) * a(n-k+1).

A036368 Number of chiral orthoplex n-ominoes in n-2 space.

Original entry on oeis.org

0, 0, 4, 14, 37, 110, 324, 888, 2368, 6336, 16874, 44414, 116181, 303362, 790157, 2051880, 5317599, 13764133, 35586766, 91910082, 237183164, 611701614, 1576773162, 4062606255, 10463699696, 26942811809, 69358469092
Offset: 4

Views

Author

Keywords

Comments

Orthoplex polyominoes are multidimensional polyominoes that do not extend more than two units along any axis.

Examples

			a(6)=4 because there are 4 pairs of chiral hexominoes in 2^4 space.
		

Crossrefs

Programs

  • Mathematica
    sc[ n_, k_ ] := sc[ n, k ]=c[ n+1-k, 1 ]+If[ n<2k, 0, sc[ n-k, k ](-1)^k ]; c[ 1, 1 ] := 1;
    c[ n_, 1 ] := c[ n, 1 ]=Sum[ c[ i, 1 ]sc[ n-1, i ]i, {i, 1, n-1} ]/(n-1);
    c[ n_, k_ ] := c[ n, k ]=Sum[ c[ i, 1 ]c[ n-i, k-1 ], {i, 1, n-1} ];
    Table[ c[ i, 4 ]/8+Sum[ c[ i, j ], {j, 5, i} ]/2-If[ OddQ[ i ], 0,
    c[ i/2, 2 ](-1)^(i/2)/8+If[ OddQ[ i/2 ], 0, c[ i/4, 1 ](-1)^(i/4)/4 ]
    +Sum[ c[ i/2, j ](-1)^(i/2), {j, 3, i/2} ]/2 ]+Sum[ c[ j, 1 ]c[ i-2j, 2 ](-1)^j/4
    -Sum[ If[ OddQ[ k ], c[ j, (k-1)/2 ]c[ i-2j, 1 ](-1)^j/2, 0 ], {k, 5, i} ],
    {j, 1, (i-1)/2} ], {i, 4, 30} ]

Formula

G.f.: (C^2(x) + C(-x^2))^2/8 - C^2(-x^2)/4 - C(-x^4)/4 + C^5(x)/(2-2C(x)) - (C(x)+C(-x^2))*C^2(-x^2)/(2-2C(-x^2)) where C(x) is the generating function for chiral n-ominoes in n-1 space, one cell labeled in A045648.

A345235 G.f. A(x) satisfies: A(x) = x + x^2 * exp(A(x) + A(-x^2)/2 + A(x^3)/3 + A(-x^4)/4 + ...).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 8, 14, 25, 44, 78, 142, 261, 479, 886, 1655, 3105, 5843, 11043, 20965, 39938, 76285, 146123, 280691, 540475, 1042885, 2016481, 3906647, 7582034, 14739395, 28697969, 55958110, 109262713, 213619535, 418158580, 819491034, 1607764395, 3157551026, 6207346544
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; A[] = 0; Do[A[x] = x + x^2 Exp[Sum[A[(-1)^(k + 1) x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; a[n_] := a[n] = (1/(n - 2)) Sum[(-1)^k Sum[(-1)^d d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 40}]

Formula

G.f.: x + x^2 / Product_{n>=1} (1 - (-x)^n)^((-1)^n*a(n)).
a(n+2) = (1/n) * Sum_{k=1..n} (-1)^k * ( Sum_{d|k} (-1)^d * d * a(d) ) * a(n-k+2).
a(n) ~ c * d^n / n^(3/2), where d = 2.04187801797233390910633071122033289228232310618876458... and c = 0.624667034123125135463988884805660643637934291759335... - Vaclav Kotesovec, Jun 19 2021
Showing 1-10 of 19 results. Next