A045655 Number of 2n-bead balanced binary strings, rotationally equivalent to reversed complement.
1, 2, 6, 20, 54, 152, 348, 884, 1974, 4556, 10056, 22508, 48636, 106472, 228444, 491120, 1046454, 2228192, 4713252, 9961436, 20960904, 44038280, 92252100, 192937940, 402599676, 838860152, 1744723896, 3623869388, 7515962172
Offset: 0
Keywords
Examples
a(2)= 6 because there are 6 such ordered pairs of length 2 binary sequences: (00,00),(11,11),(01,01),(10,10),(01,10),(10,01). a(3)= 20 because the classes of 3-bit strings are 1*(000), 3*(001,010,100), 3*(011,110,101), 1*(111) = 1 + 9 + 9 + 1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Chuan Guo, J. Shallit, A. M. Shur, On the Combinatorics of Palindromes and Antipalindromes, arXiv preprint arXiv:1503.09112 [cs.FL], 2015.
- V. V. Strok, Circulant matrices and the spectra of de Bruijn graphs, Ukr. Math. J. 44 (11) (1992) 1446-1454.
Crossrefs
Programs
-
Mathematica
f[n_] := 2*Plus @@ Table[ Length[ Union[ NestList[ RotateLeft, IntegerDigits[b, 2, n], n - 1]]], {b, 0, 2^(n - 1) - 1}]; f[0] = 1; Array[f, 21, 0] (* Olivier Gérard, Jan 01 2012 *)
-
PARI
c(n)={sumdiv(n,d, moebius(d)*d)} \\ A023900 a(n)={if(n<1, n==0, sumdiv(n, d, c(n/d)*d*2^d))} \\ Andrew Howroyd, Sep 15 2019
Formula
a(n) = Sum_{d|n} A023900(n/d)*d*2^d. - Andrew Howroyd, Sep 15 2019
Comments