A045674 Number of 2n-bead balanced binary necklaces which are equivalent to their reverse, complement and reversed complement.
1, 1, 2, 2, 4, 4, 6, 8, 12, 16, 20, 32, 38, 64, 72, 128, 140, 256, 272, 512, 532, 1024, 1056, 2048, 2086, 4096, 4160, 8192, 8264, 16384, 16512, 32768, 32908, 65536, 65792, 131072, 131344, 262144, 262656, 524288, 524820, 1048576, 1049600
Offset: 0
Keywords
Links
Crossrefs
Cf. A045654.
Programs
-
Mathematica
a[0] = 1; a[n_] := a[n] = If[EvenQ[n], 2^(n/2-1) + a[n/2], 2^((n-1)/2)]; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Sep 30 2017 *)
-
PARI
a(n) = if(n<1, n==0, my(t=0,r=n); while(r%2==0, r=r/2; t+=2^(r-1)); t + 2^(r\2)); \\ Andrew Howroyd, Sep 29 2017
Formula
a(2n) = a(n) + 2^(n-1), a(2n+1) = 2^n. - Ralf Stephan, Nov 01 2003