A045683
Number of 2n-bead balanced binary necklaces of fundamental period 2n which are equivalent to their reverse, complement and reversed complement.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 3, 7, 8, 14, 15, 31, 30, 63, 63, 123, 128, 255, 252, 511, 510, 1015, 1023, 2047, 2040, 4092, 4095, 8176, 8190, 16383, 16365, 32767, 32768, 65503, 65535, 131061, 131040, 262143, 262143, 524223, 524280, 1048575, 1048509, 2097151
Offset: 0
-
A045683 := proc(p)
option remember ;
if p = 0 then
return 1;
end if;
a := 2^(floor((p+1)/2)-1) ;
for d in numtheory[divisors](p) do
if d >1 and type(d,'odd') then
a := a-procname(p/d) ;
end if;
end do:
a ;
end proc:
seq(A045683(p),p=0..30) ; # [Iglesias eq 12] R. J. Mathar, Apr 15 2024
-
b[0] = 1; b[n_] := Module[{t = 0, r = n}, While[EvenQ[r], r = Quotient[r, 2]; t += 2^(r-1)]; t + 2^Quotient[r, 2]];
a[0] = 1; a[n_] := DivisorSum[n, MoebiusMu[n/#]*b[#]&];
Table[a[n], {n, 0, 43}] (* Jean-François Alcover, Sep 30 2017, after Andrew Howroyd *)
-
a(n)={if(n<1, n==0, sumdiv(n, d, if(d%2, moebius(d)*2^((n/d-1)\2))))} \\ Andrew Howroyd, Oct 01 2019
A056503
Number of periodic palindromic structures of length n using a maximum of two different symbols.
Original entry on oeis.org
1, 2, 2, 4, 4, 7, 8, 14, 16, 26, 32, 51, 64, 100, 128, 198, 256, 392, 512, 778, 1024, 1552, 2048, 3091, 4096, 6176, 8192, 12324, 16384, 24640, 32768, 49222, 65536, 98432, 131072, 196744, 262144, 393472, 524288, 786698, 1048576, 1573376, 2097152, 3146256, 4194304
Offset: 1
From _Gus Wiseman_, Sep 16 2018: (Start)
The sequence of palindromic cyclic compositions begins:
(1) (2) (3) (4) (5) (6) (7)
(11) (111) (22) (113) (33) (115)
(112) (122) (114) (133)
(1111) (11111) (222) (223)
(1122) (11113)
(11112) (11212)
(111111) (11122)
(1111111)
(End)
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Cf.
A000740,
A000837,
A008965,
A025065,
A059966,
A242414,
A296302,
A317085,
A317086,
A317087,
A318731.
-
(* b = A164090, c = A045674 *)
b[n_] := (1/4)*(7 - (-1)^n)*2^((1/4)*(2*n + (-1)^n - 1));
c[0] = 1; c[n_] := c[n] = If[EvenQ[n], 2^(n/2-1) + c[n/2], 2^((n-1)/2)];
a[n_?OddQ] := b[n]/2; a[n_?EvenQ] := (1/2)*(b[n] + c[n/2]);
Array[a, 45] (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Function[q,And[Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And],Array[SameQ[RotateRight[q,#],Reverse[RotateRight[q,#]]]&,Length[q],1,Or]]]]],{n,15}] (* Gus Wiseman, Sep 16 2018 *)
A045656
Number of 2n-bead balanced binary strings, rotationally equivalent to reverse, complement and reversed complement.
Original entry on oeis.org
1, 2, 6, 8, 22, 32, 48, 100, 150, 260, 336, 684, 784, 1640, 1868, 3728, 4246, 8672, 9372, 19420, 20752, 42736, 45700, 94164, 98832, 204632, 214584, 441764, 460524, 950216, 985968, 2031556, 2101398, 4323888, 4465056, 9174400, 9444988
Offset: 0
-
b[n_] := Module[{t = 0, r = n}, If[n == 0, 1, While[Mod[r, 2] == 0, r = r/2; t += 2^(r - 1)]; t + 2^Quotient[r, 2]]];
c[n_] := Sum[MoebiusMu[d]*d, {d, Divisors[n]}];
a[n_] := If[n == 0, 1, 2*Sum[c[n/d]*d*b[d], {d, Divisors[n]}]];
a /@ Range[0, 36] (* Jean-François Alcover, Sep 23 2019, from PARI *)
-
\\ here b(n) is A045674, c(n) is A023900.
b(n) = if(n<1, n==0, my(t=0, r=n); while(r%2==0, r=r/2; t+=2^(r-1)); t + 2^(r\2));
c(n) = {sumdiv(n,d, moebius(d)*d)}
a(n) = if(n<1, n==0, 2*sumdiv(n, d, c(n/d)*d*b(d))); \\ Andrew Howroyd, Sep 15 2019
A045665
Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally equivalent to reverse, complement and reversed complement.
Original entry on oeis.org
1, 2, 4, 6, 16, 30, 36, 98, 128, 252, 300, 682, 720, 1638, 1764, 3690, 4096, 8670, 9072, 19418, 20400, 42630, 45012, 94162, 97920, 204600, 212940, 441504, 458640, 950214, 981900, 2031554, 2097152, 4323198, 4456380, 9174270, 9434880
Offset: 0
-
a(n)={if(n<1, n==0, n*sumdiv(n, d, if(d%2, moebius(d)*2^((n/d+1)\2))))} \\ Andrew Howroyd, Oct 01 2019
A056513
Number of primitive (period n) periodic palindromic structures using a maximum of two different symbols.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 7, 10, 14, 21, 31, 42, 63, 91, 123, 184, 255, 371, 511, 750, 1015, 1519, 2047, 3030, 4092, 6111, 8176, 12222, 16383, 24486, 32767, 49024, 65503, 98175, 131061, 196308, 262143, 392959, 524223, 785910, 1048575, 1572256, 2097151, 3144702, 4194162
Offset: 0
From _Gus Wiseman_, Sep 16 2018: (Start)
The sequence of palindromic Lyndon compositions begins:
(1) (2) (3) (4) (5) (6) (7)
(112) (113) (114) (115)
(122) (1122) (133)
(11112) (223)
(11113)
(11212)
(11122)
(End)
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
(* b = A164090, c = A045674 *)
b[n_] := (1/4)*(7 - (-1)^n)*2^((1/4)*(2*n + (-1)^n - 1));
c[0] = 1;
c[n_] := c[n] = If[EvenQ[n], 2^(n/2 - 1) + c[n/2], 2^((n - 1)/2)];
a56503[n_] := If[OddQ[n], b[n]/2, (1/2)*(b[n] + c[n/2])];
a[n_] := DivisorSum[n, MoebiusMu[#] a56503[n/#]&];
Array[a, 45] (* Jean-François Alcover, Jun 29 2018, after Andrew Howroyd *)
-
a(n) = {if(n < 1, n==0, sumdiv(n, d, moebius(d)*(2 + d%2)*(2^(n/d\2)))/(4 - n%2))} \\ Andrew Howroyd, Sep 26 2019
-
seq(n) = Vec(1 + (1/2)*sum(k=1, n, moebius(k)*x^k*(2 + 3*x^k)/(1 - 2*x^(2*k)) - moebius(2*k)*x^(2*k)*(1 + x^(2*k))/(1 - 2*x^(4*k)) + O(x*x^n))) \\ Andrew Howroyd, Sep 27 2019
A045675
Number of 2n-bead balanced binary necklaces which are not equivalent to their reverse, complement or reversed complement.
Original entry on oeis.org
0, 0, 0, 0, 0, 8, 32, 168, 616, 2380, 8472, 30760, 109644, 394816, 1420784, 5149948, 18736744, 68553728, 251902032, 929814984, 3445433608, 12814382620, 47817551136, 178982546512, 671813695340, 2528191984504, 9536849826816
Offset: 0
-
a3239[n_] := If[n==0, 1, Sum[EulerPhi[n/k]*Binomial[2k, k]/(2n), {k, Divisors[n]}]];
a128014[n_] := SeriesCoefficient[(1 + x)/Sqrt[1 - 4 x^2], {x, 0, n}];
a11782[n_] := SeriesCoefficient[(1 - x)/(1 - 2x), {x, 0, n}];
a13[n_] := If[n==0, 1, Sum[(EulerPhi[2d]*2^(n/d)), {d, Divisors[n]}]/(2n)];
a45674[n_] := a45674[n] = If[n==0, 1, If[EvenQ[n], 2^(n/2-1) + a45674[n/2], 2^((n-1)/2)]];
a[n_] := a3239[n] - a128014[n] - a13[n] - a11782[n] + 2 a45674[n];
a /@ Range[0, 100] (* Jean-François Alcover, Sep 23 2019 *)
A045678
Number of 2n-bead balanced binary necklaces which are equivalent to their reversed complement, but not equivalent to their reverse and complement.
Original entry on oeis.org
0, 0, 0, 2, 4, 12, 26, 56, 116, 240, 492, 992, 2010, 4032, 8120, 16256, 32628, 65280, 130800, 261632, 523756, 1047552, 2096096, 4192256, 8386522, 16773120, 33550272, 67100672, 134209464, 268419072, 536854400, 1073709056, 2147450740
Offset: 0
A056508
Number of periodic palindromic structures of length n using exactly two different symbols.
Original entry on oeis.org
0, 1, 1, 3, 3, 6, 7, 13, 15, 25, 31, 50, 63, 99, 127, 197, 255, 391, 511, 777, 1023, 1551, 2047, 3090, 4095, 6175, 8191, 12323, 16383, 24639, 32767, 49221, 65535, 98431, 131071, 196743, 262143, 393471, 524287, 786697, 1048575, 1573375, 2097151, 3146255, 4194303
Offset: 1
From _Andrew Howroyd_, Apr 07 2017: (Start)
Example for n=6:
Periodic symmetry means results are either in the form abccba or abcdcb.
There are 3 binary words in the form abccba that start with 0 and contain a 1 which are 001100, 010010, 011110. Of these, 011110 is equivalent to 001100 after rotation.
There are 7 binary words in the form abcdcb that start with 0 and contain a 1 which are 000100, 001010, 001110, 010001, 010101, 011011, 011111. Of these, 011111 is equivalent to 000100, 010001 is equivalent to 001010 and 011011 is equivalent to 010010 from the first set.
There are therefore a total of 7 + 3 - 4 = 6 equivalence classes so a(6) = 6.
(End)
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
(* b = A164090, c = A045674 *)
b[n_] := (1/4)*(7 - (-1)^n)*2^((1/4)*(2*n + (-1)^n - 1));
c[0] = 1;
c[n_] := c[n] = If[EvenQ[n], 2^(n/2 - 1) + c[n/2], 2^((n - 1)/2)];
a[n_] := If[OddQ[n], b[n]/2, (1/2)*(b[n] + c[n/2])] - 1;
Array[a, 45] (* Jean-François Alcover, Jun 29 2018, after Andrew Howroyd *)
A045676
Number of 2n-bead balanced binary necklaces which are equivalent to their reverse, but not equivalent to their complement and reversed complement.
Original entry on oeis.org
0, 0, 0, 0, 2, 2, 14, 12, 58, 54, 232, 220, 886, 860, 3360, 3304, 12730, 12614, 48348, 48108, 184224, 183732, 704376, 703384, 2702070, 2700060, 10396440, 10392408, 40108336, 40100216, 155101008, 155084752, 601047482, 601014854, 2333540428
Offset: 0
A045677
Number of 2n-bead balanced binary necklaces which are equivalent to their complement, but not equivalent to their reverse and their reversed complement.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 2, 2, 8, 14, 36, 62, 142, 252, 524, 968, 1928, 3600, 7044, 13286, 25740, 48916, 94364, 180314, 347630, 666996, 1286712, 2477342, 4785824, 9240012, 17880320, 34604066, 67078024, 130085052, 252583200, 490722344, 954313264
Offset: 0
-
A045674[n_] := A045674[n] = If[n == 0, 1, If[EvenQ[n], 2^(n/2 - 1) + A045674[n/2], 2^((n - 1)/2)]];
a[n_] := If[n == 0, 1, Sum[EulerPhi[2 d] 2^(n/d), {d, Divisors[n]}]/(2 n)] - A045674[n];
a /@ Range[0, 36] (* Jean-François Alcover, Sep 13 2019 *)
Showing 1-10 of 11 results.
Comments