A285037
Irregular triangle read by rows: T(n,k) is the number of primitive (period n) periodic palindromic structures using exactly k different symbols, 1 <= k <= n/2 + 1.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 2, 1, 0, 3, 1, 0, 4, 5, 1, 0, 7, 6, 1, 0, 10, 18, 7, 1, 0, 14, 25, 10, 1, 0, 21, 63, 43, 10, 1, 0, 31, 90, 65, 15, 1, 0, 42, 202, 219, 85, 13, 1, 0, 63, 301, 350, 140, 21, 1, 0, 91, 650, 1058, 618, 154, 17, 1, 0, 123, 965, 1701, 1050, 266, 28, 1
Offset: 1
Triangle starts:
1
0 1
0 1
0 2 1
0 3 1
0 4 5 1
0 7 6 1
0 10 18 7 1
0 14 25 10 1
0 21 63 43 10 1
0 31 90 65 15 1
0 42 202 219 85 13 1
0 63 301 350 140 21 1
0 91 650 1058 618 154 17 1
0 123 965 1701 1050 266 28 1
0 184 2016 4796 4064 1488 258 21 1
0 255 3025 7770 6951 2646 462 36 1
0 371 6220 21094 24914 12857 3222 410 26 1
0 511 9330 34105 42525 22827 5880 750 45 1
...
Example for n=6, k=2:
There are 6 inequivalent solutions to A285012(6,2) which are 001100, 010010, 000100, 001010, 001110, 010101. Of these, 010010 and 010101 have a period less than 6, so T(6,2) = 6-2 = 4.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
\\ Ach is A304972
Ach(n,k=n) = {my(M=matrix(n, k, n, k, n>=k)); for(n=3, n, for(k=2, k, M[n, k]=k*M[n-2, k] + M[n-2, k-1] + if(k>2, M[n-2, k-2]))); M}
T(n,k=n\2+1) = {my(A=Ach(n\2+1,k), S=matrix(n\2+1, k, n, k, stirling(n,k,2))); Mat(vectorv(n, n, sumdiv(n, d, moebius(d)*(S[(n/d+1)\2, ] + S[n/d\2+1, ] + if((n-d)%2, A[(n/d+1)\2, ] + A[n/d\2+1, ]))/if(d%2, 2, 1) )))}
{ my(A=T(20)); for(n=1, matsize(A)[1], print(A[n,1..n\2+1])) } \\ Andrew Howroyd, Oct 01 2019
-
\\ column sequence using above code.
ColSeq(n, k=2) = { Vec(T(n,k)[,k]) } \\ Andrew Howroyd, Oct 01 2019
A056519
Number of primitive (period n) periodic palindromic structures using exactly three different symbols.
Original entry on oeis.org
0, 0, 0, 1, 1, 5, 6, 18, 25, 63, 90, 202, 301, 650, 965, 2016, 3025, 6220, 9330, 18970, 28495, 57650, 86526, 174210, 261624, 525693, 788945, 1582462, 2375101, 4759482, 7141686, 14300976, 21457735, 42951825, 64439003, 128946888, 193448101, 387037370, 580606145, 1161485370
Offset: 1
For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome. Permuting the symbols will not change the structure.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
A179317
'APE(n,k)' triangle read by rows. APE(n,k) is the number of aperiodic k-palindromes of n up to cyclic equivalence.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 3, 0, 3, 0, 0, 1, 0, 3, 1, 3, 1, 1, 0, 1, 0, 3, 0, 6, 0, 4, 0, 0, 1, 0, 4, 2, 5, 2, 4, 2, 1, 0, 1, 0, 5, 0, 10, 0, 10, 0, 5, 0, 0, 1, 0, 4, 2, 10, 4, 10, 4, 4, 2, 1, 0
Offset: 1
The triangle begins
1
1,0
1,0,0
1,0,1,0
1,0,2,0,0
1,0,1,1,1,0
1,0,3,0,3,0,0
1,0,3,1,3,1,1,0
1,0,3,0,6,0,4,0,0
1,0,4,2,5,2,4,2,1,0
For example, row 8 is 1,0,3,1,3,1,1,0.
We have APE(8,3)=3 because there are 3 aperiodic 3-palindromes of 8, namely: 161, 242, and 323, and none are cyclically equivalent to the others.
We have APE(8,4)=1 because there are 2 aperiodic 4-palindromes of 8, namely: 3113 and 1331, but they are cyclically equivalent.
- John P. McSorley: Counting k-compositions of n with palindromic and related structures. Preprint, 2010.
The row sums of the 'APE(n, k)' triangle give sequence
A056513.
-
T[n_, k_] := (3-(-1)^k)/4*Sum[MoebiusMu[d]*QBinomial[n/d - 1, k/d - 1, -1], {d, Divisors[GCD[n, k]]}];
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 24 2019 *)
-
\\ here p(n, k)=A051159(n-1, k-1) is number of k-palindromes of n.
p(n, k) = if(n%2==1&&k%2==0, 0, binomial((n-1)\2, (k-1)\2));
T(n, k) = if(k%2,1,1/2) * sumdiv(gcd(n,k), d, moebius(d) * p(n/d, k/d));
for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) \\ Andrew Howroyd, Oct 07 2017
A056518
Number of primitive (period n) periodic palindromic structures using exactly two different symbols.
Original entry on oeis.org
0, 1, 1, 2, 3, 4, 7, 10, 14, 21, 31, 42, 63, 91, 123, 184, 255, 371, 511, 750, 1015, 1519, 2047, 3030, 4092, 6111, 8176, 12222, 16383, 24486, 32767, 49024, 65503, 98175, 131061, 196308, 262143, 392959, 524223, 785910, 1048575, 1572256, 2097151, 3144702, 4194162
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Showing 1-4 of 4 results.
Comments