A179519
'AP(n,k)' triangle read by rows. AP(n,k) is the number of aperiodic k-palindromes of n.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 2, 1, 0, 1, 0, 3, 0, 3, 0, 0, 1, 0, 3, 2, 3, 2, 1, 0, 1, 0, 3, 0, 6, 0, 4, 0, 0, 1, 0, 4, 4, 5, 4, 4, 4, 1, 0, 1, 0, 5, 0, 10, 0, 10, 0, 5, 0, 0, 1, 0, 4, 4, 10, 8, 10, 8, 4, 4, 1, 0
Offset: 1
The triangle begins
1
1,0
1,0,0
1,0,1,0
1,0,2,0,0
1,0,1,2,1,0
1,0,3,0,3,0,0
1,0,3,2,3,2,1,0
1,0,3,0,6,0,4,0,0
1,0,4,4,5,4,4,4,1,0
For example, row 8 is 1,0,3,2,3,2,1,0.
We have AP(8,3)=3 because there are 3 aperiodic 3-palindromes of 8, namely: 161, 242, and 323.
We have AP(8,4)=2 because there are 2 aperiodic 4-palindromes of 8, namely: 3113 and 1331.
- John P. McSorley: Counting k-compositions of n with palindromic and related structures. Preprint, 2010.
If we count the aperiodic k-palindromes of n up to cyclic equivalence, APE(n, k), we get sequence
A179317.
-
T[n_, k_] := Sum[MoebiusMu[d]*QBinomial[n/d-1, k/d-1, -1], {d, Divisors[ GCD[n, k]]}]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 30 2017, after Andrew Howroyd *)
-
\\ here p(n,k)=A051159(n-1,k-1) is number of k-palindromes of n.
p(n, k) = if(n%2==1&&k%2==0, 0, binomial((n-1)\2, (k-1)\2));
T(n, k) = sumdiv(gcd(n,k), d, moebius(d) * p(n/d, k/d));
for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) \\ Andrew Howroyd, Oct 07 2017
A056513
Number of primitive (period n) periodic palindromic structures using a maximum of two different symbols.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 7, 10, 14, 21, 31, 42, 63, 91, 123, 184, 255, 371, 511, 750, 1015, 1519, 2047, 3030, 4092, 6111, 8176, 12222, 16383, 24486, 32767, 49024, 65503, 98175, 131061, 196308, 262143, 392959, 524223, 785910, 1048575, 1572256, 2097151, 3144702, 4194162
Offset: 0
From _Gus Wiseman_, Sep 16 2018: (Start)
The sequence of palindromic Lyndon compositions begins:
(1) (2) (3) (4) (5) (6) (7)
(112) (113) (114) (115)
(122) (1122) (133)
(11112) (223)
(11113)
(11212)
(11122)
(End)
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
(* b = A164090, c = A045674 *)
b[n_] := (1/4)*(7 - (-1)^n)*2^((1/4)*(2*n + (-1)^n - 1));
c[0] = 1;
c[n_] := c[n] = If[EvenQ[n], 2^(n/2 - 1) + c[n/2], 2^((n - 1)/2)];
a56503[n_] := If[OddQ[n], b[n]/2, (1/2)*(b[n] + c[n/2])];
a[n_] := DivisorSum[n, MoebiusMu[#] a56503[n/#]&];
Array[a, 45] (* Jean-François Alcover, Jun 29 2018, after Andrew Howroyd *)
-
a(n) = {if(n < 1, n==0, sumdiv(n, d, moebius(d)*(2 + d%2)*(2^(n/d\2)))/(4 - n%2))} \\ Andrew Howroyd, Sep 26 2019
-
seq(n) = Vec(1 + (1/2)*sum(k=1, n, moebius(k)*x^k*(2 + 3*x^k)/(1 - 2*x^(2*k)) - moebius(2*k)*x^(2*k)*(1 + x^(2*k))/(1 - 2*x^(4*k)) + O(x*x^n))) \\ Andrew Howroyd, Sep 27 2019
A179181
'PE(n,k)' triangle read by rows. PE(n,k) is the number of k-palindromes of n up to cyclic equivalence.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 3, 0, 3, 0, 1, 1, 1, 3, 2, 3, 2, 1, 1, 1, 0, 4, 0, 6, 0, 4, 0, 1, 1, 1, 4, 2, 6, 4, 4, 2, 1, 1, 1, 0, 5, 0, 10, 0, 10, 0, 5, 0, 1, 1, 1, 5, 3, 10, 6, 10, 5, 5, 3, 1, 1
Offset: 1
The triangle begins
1
1,1
1,0,1
1,1,1,1
1,0,2,0,1
1,1,2,1,1,1
1,0,3,0,3,0,1
1,1,3,2,3,2,1,1
1,0,4,0,6,0,4,0,1
1,1,4,2,6,4,4,2,1,1
For example, row 8 is 1,1,3,2,3,2,1,1.
We have PE(8,3)=3 because there are 3 3-palindromes of 8, namely: 161, 242, and 323, and none are cyclically equivalent to the others.
We have PE(8,4)=2 because there are 3 4-palindromes of 8, namely: 3113, 1331, and 2222, but 3113 and 1331 are cyclically equivalent.
- John P. McSorley: Counting k-compositions with palindromic and related structures. Preprint, 2010.
If we ignore cyclic equivalence then we have sequence
A051159.
The row sums of the 'PE(n, k)' triangle give sequence
A056503.
-
T[n_, k_] := (3 - (-1)^k)/4*Sum[MoebiusMu[d]*QBinomial[n/d - 1, k/d - 1, -1], {d, Divisors@ GCD[n, k]}]; Table[DivisorSum[GCD[n, k], T[n/#, k/#] &], {n, 12}, {k, n}] // Flatten (* Michael De Vlieger, Oct 31 2021, after Jean-François Alcover at A179317 *)
-
p(n, k) = if(n%2==1&&k%2==0, 0, binomial((n-1)\2, (k-1)\2));
APE(n, k) = if(k%2,1,1/2) * sumdiv(gcd(n,k), d, moebius(d) * p(n/d, k/d));
T(n, k) = sumdiv(gcd(n,k), d, APE(n/d, k/d));
for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) \\ Andrew Howroyd, Oct 07 2017
Showing 1-3 of 3 results.
Comments