cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045699 Numbers of the form p^2 + q^3, p,q prime.

Original entry on oeis.org

12, 17, 31, 33, 36, 52, 57, 76, 129, 134, 148, 150, 174, 177, 196, 246, 294, 297, 316, 347, 352, 368, 369, 388, 392, 414, 464, 486, 512, 537, 556, 632, 654, 704, 849, 868, 872, 966, 969, 988, 1086, 1184, 1304, 1335, 1340, 1356, 1377, 1380, 1396, 1452
Offset: 1

Views

Author

Keywords

Examples

			a(4)=36 because 36=3^3+3^2; a(7)=76 because 76=3^3+7^2.
		

Crossrefs

Programs

  • Mathematica
    max = 1500; pp = Prime[Range[PrimePi[Sqrt[max]]]]; qq = Prime[Range[PrimePi[max^(1/3)]]]; Select[Union[Flatten[Outer[Plus, pp^2, qq^3]]], # <= max&] (* Jean-François Alcover, Apr 26 2011 *)
    With[{upto=1500},Select[Union[Flatten[{#[[1]]^2+#[[2]]^3,#[[2]]^2+ #[[1]]^3}&/@ Tuples[Prime[Range[Floor[Sqrt[upto/8]]]],2]]],#<=upto&]] (* Harvey P. Dale, Dec 18 2018 *)
  • PARI
    list(lim)=my(v=List(),t); lim\=1; forprime(q=2,sqrtnint(lim-4,3), t=q^3; forprime(p=2,sqrtint(lim-t), listput(v, p^2+t))); Set(v) \\ Charles R Greathouse IV, Jun 07 2016

Formula

Numbers n such that A045701(n)>0.