A045745 Numbers n such that sum of proper divisors s(n) is a triangular number T(k).
1, 2, 3, 4, 5, 6, 7, 11, 13, 14, 16, 17, 18, 19, 23, 24, 25, 28, 29, 31, 33, 36, 37, 41, 43, 47, 51, 53, 54, 59, 61, 66, 67, 71, 73, 79, 83, 89, 91, 97, 101, 103, 107, 109, 112, 113, 123, 127, 131, 135, 137, 139, 149, 151, 157, 163, 167, 172, 173, 179, 181, 191, 193
Offset: 1
Examples
s(14)=1+2+7=10 is a triangular number. In fact T(4)=10.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A000217.
Programs
-
Maple
select(t -> issqr(1+8*(numtheory:-sigma(t)-t)), [$1..1000]); # Robert Israel, Dec 25 2016
-
Mathematica
tri[ n_ ] := Module[ {}, a=Floor[ N[ Sqrt[ 2n ] ] ]; a(a+1)/2==n ]; Select[ Range[ 300 ], tri[ Apply[ Plus, Divisors[ # ] ]-# ]& ]
Extensions
More terms from Erich Friedman