A045763 Number of numbers "unrelated to n": m < n such that m is neither a divisor of n nor relatively prime to n.
0, 0, 0, 0, 0, 1, 0, 1, 1, 3, 0, 3, 0, 5, 4, 4, 0, 7, 0, 7, 6, 9, 0, 9, 3, 11, 6, 11, 0, 15, 0, 11, 10, 15, 8, 16, 0, 17, 12, 17, 0, 23, 0, 19, 16, 21, 0, 23, 5, 25, 16, 23, 0, 29, 12, 25, 18, 27, 0, 33, 0, 29, 22, 26, 14, 39, 0, 31, 22, 39, 0, 37, 0, 35, 30, 35, 14, 47, 0, 39, 23, 39, 0, 49
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Martin Beumer, The Arithmetical Function tau_k(N), Amer. Math. Monthly, 69, Oct 1962, p. 780 (a(n)=ksi(N)).
Programs
-
Maple
A045763 := proc(n) n+1-numtheory[tau](n)-numtheory[phi](n) ; end proc: seq(A045763(n),n=1..100);# Robert Israel, Dec 23 2014
-
Mathematica
f[n_] := n + 1 - DivisorSigma[0, n] - EulerPhi[n]; Array[f, 84] (* Robert G. Wilson v *)
-
PARI
a(n)=n+1-numdiv(n)-eulerphi(n) \\ Charles R Greathouse IV, Jul 15 2011
-
Python
from sympy import divisor_count, totient def A045763(n): return n+1-divisor_count(n)-totient(n) # Chai Wah Wu, Sep 02 2024
Formula
a(n) = n + 1 - d(n) - phi(n), where d(n) is the number of divisors of n and phi is Euler's totient function.
Dirichlet generating function: zeta(s-1) + zeta(s) - zeta(s)^2 - zeta(s-1)/zeta(s). - Robert Israel, Dec 23 2014
a(n) = Sum_{k=1..n} (1 - floor(1/gcd(n,k))) * (ceiling(n/k) - floor(n/k)). - Wesley Ivan Hurt, Jan 06 2024
Extensions
More terms from Robert G. Wilson v, Nov 02 2005
Comments