A045819 Theta series of E_8 lattice with respect to midpoint of edge.
2, 56, 252, 688, 1514, 2664, 4396, 7056, 9828, 13720, 19264, 24336, 31502, 40880, 48780, 59584, 74592, 86688, 101308, 123088, 137844, 159016, 190764, 207648, 235986, 275184, 297756, 335664, 384160, 410760, 453964, 520816, 553896, 601528
Offset: 0
Examples
2*q^(1/2) + 56*q^(3/2) + 252*q^(5/2) + ...
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, 1999, p. 123.
Links
- Gabriele Nebe and N. J. A. Sloane, Home page for this lattice.
Programs
-
Mathematica
a[n_] := 2 DivisorSigma[3, 2 n + 1]; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Jul 06 2017, after Benoit Cloitre *)
Formula
G.f.: (1/2)*(theta_2^2*theta_3^6 + theta_2^6*theta_3^2).
a(n) = 2*sigma_3(2n+1). - Benoit Cloitre, Apr 12 2003
a(n) = 2 * A045823(n). - Alois P. Heinz, Mar 21 2021
Sum_{k=0..n} a(k) ~ (15*zeta(4)/4) * n^4. - Amiram Eldar, Dec 12 2023
Extensions
More terms from Benoit Cloitre, Apr 12 2003