cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A373976 a(n) = A001222(n) - A001222(A001414(n)), where A001222 is bigomega, the number of prime factors with multiplicity, and A001414 is sopfr, sum of prime factors with multiplicity. a(1) = 0 by convention.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, -1, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 1, 2, 0, 1, 0, 3, 0, 1, -1, 2, 0, 0, -2, 3, 0, 0, 0, 1, 2, 0, 0, 4, 0, 0, -1, 2, 0, 3, -2, 3, 0, 1, 0, 1, 0, 0, 2, 3, -1, -1, 0, 1, 0, 1, 0, 2, 0, 0, 2, 2, -1, 0, 0, 4, 1, 1, 0, 2, 0, -1, -3, 3, 0, 3, -1, 0, 0, 0, -2, 5, 0, -1, 2, 2, 0
Offset: 1

Views

Author

Antti Karttunen, Jun 24 2024

Keywords

Crossrefs

Cf. also A045835.

Programs

Formula

a(n) = A001222(n) - A342956(n).

A271101 Squarefree semiprimes (A006881) whose average prime factor is prime.

Original entry on oeis.org

21, 33, 57, 69, 85, 93, 129, 133, 145, 177, 205, 213, 217, 237, 249, 253, 265, 309, 393, 417, 445, 469, 489, 493, 505, 517, 553, 565, 573, 597, 633, 669, 685, 697, 753, 781, 793, 813, 817, 865, 889, 913, 933, 949, 973, 985, 993, 1057, 1077, 1137, 1149, 1177, 1257, 1273, 1285, 1329
Offset: 1

Views

Author

Antonio Roldán, Mar 30 2016

Keywords

Comments

Sum of factors of a(n) if semiprime (product 2*p, with p prime).
This sequence is subsequence of A006881, A089765, A187073, A108633 and A213015.
This sequence is also subsequence of A045835, because sopfr(omega(a(n))) = omega(sopfr(a(n))): sopfr(omega(a(n)))=sopfr(2)=2, and omega(sopfr(a(n)))=omega(2*p)=2 (p prime, p>2, average prime factor).

Examples

			133 is in the sequence because 133 is a squarefree semiprime: 133=7*19, and (7+19)/2=13, a prime number.
		

Crossrefs

Programs

  • Maple
    N:= 10000: # for terms <= N
    Primes:= select(isprime, [seq(i, i=3..N/3)]):
    SP:= [seq(seq([p, q], q = select(`<=`, Primes, min(p-1, N/p))), p=Primes)]:
    B:= select(t -> isprime((t[1]+t[2])/2), SP):
    sort(map(t -> t[1]*t[2], B)); # Robert Israel, Dec 14 2019
  • Mathematica
    Select[Select[Range@ 1330, SquareFreeQ@ # && PrimeOmega@ # == 2 &], PrimeQ@ Mean[First /@ FactorInteger@ #] &] (* Michael De Vlieger, Mar 30 2016 *)
  • PARI
    sopf(n)= { local(f, s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(s) }
    {for (n=6, 2*10^3,  if(bigomega(n)==2&&omega(n)==2, m=sopf(n)/2;if(m==truncate(m),if(isprime(m), print1(n, ", ")))))}
Showing 1-2 of 2 results.