A004025 Theta series of b.c.c. lattice with respect to long edge.
2, 4, 0, 0, 8, 8, 0, 0, 10, 8, 0, 0, 8, 16, 0, 0, 16, 12, 0, 0, 16, 8, 0, 0, 10, 24, 0, 0, 24, 16, 0, 0, 16, 16, 0, 0, 8, 24, 0, 0, 32, 16, 0, 0, 24, 16, 0, 0, 18, 28, 0, 0, 24, 32, 0, 0, 16, 8, 0, 0, 24, 32, 0, 0, 32, 32, 0, 0, 32, 16, 0, 0, 16, 40, 0, 0, 32
Offset: 1
Examples
2*q + 4*q^2 + 8*q^5 + 8*q^6 + 10*q^9 + 8*q^10 + 8*q^13 + 16*q^14 + 16*q^17 + ...
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- N. J. A. Sloane and B. K. Teo, Theta series and magic numbers for close-packed spherical clusters, J. Chem. Phys. 83 (1985) 6520-6534.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Index entries for sequences related to b.c.c. lattice
Programs
-
Mathematica
a[n_] := Module[{A = x*O[x]^n}, SeriesCoefficient[2*QPochhammer[x^2+A]^5 * (QPochhammer[x^8+A]^4 / (QPochhammer[x+A]^2*QPochhammer[x^4+A]^4)), {x, 0, n}]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Nov 05 2015, adapted from PARI *)
-
PARI
{a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( 2 * eta(x^2 + A)^5 * eta(x^8 + A)^4 / (eta(x + A)^2 * eta(x^4 + A)^4), n))} /* Michael Somos, May 31 2012 */
Formula
From Michael Somos, May 31 2012: (Start)
Expansion of 2 * x * phi(x) * psi(x^4)^2 = 2 * x * psi(-x^2)^4 / phi(-x) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of 2 * eta(q^2)^5 * eta(q^8)^4 / (eta(q)^2 * eta(q^4)^4) in powers of q.
Comments