A320846 Expansion of Product_{k>=1} 1/(1 - x^(k^2))^A037444(k).
1, 1, 1, 1, 3, 3, 3, 3, 6, 10, 10, 10, 14, 22, 22, 22, 35, 47, 57, 57, 79, 95, 115, 115, 146, 217, 247, 267, 307, 433, 473, 513, 598, 779, 985, 1045, 1253, 1489, 1861, 1941, 2272, 2859, 3397, 3847, 4301, 5467, 6171, 6991, 7688, 9531, 11559, 12749, 14693
Offset: 0
Keywords
Examples
a(8) = 6 because we have [{4}, {4}], [{4}, {1, 1, 1, 1}], [{4}, {1}, {1}, {1}, {1}], [{1, 1, 1, 1}, {1, 1, 1, 1}], [{1, 1, 1, 1}, {1}, {1}, {1}, {1}] and [{1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}].
Programs
-
Mathematica
b[n_] := b[n] = SeriesCoefficient[Product[1/(1 - x^k^2), {k, 1, n}], {x, 0, n^2}]; a[n_] := a[n] = SeriesCoefficient[Product[1/(1 - x^k^2)^b[k], {k, 1, n}], {x, 0, n}]; Table[a[n], {n, 0, 52}]
Comments