A045995 Rows of Fibonacci-Pascal triangle.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 8, 3, 1, 1, 5, 55, 55, 5, 1, 1, 8, 610, 6765, 610, 8, 1, 1, 13, 10946, 9227465, 9227465, 10946, 13, 1, 1, 21, 317811, 225851433717, 190392490709135, 225851433717, 317811, 21, 1, 1, 34, 14930352
Offset: 0
Examples
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 8, 3, 1, 1, 5, 55, 55, 5, 1, 1, 8, 610, 6765, 610, 8, 1, 1, 13, 10946, 9227465, 9227465, 10946, 13, 1, 1, 21, 317811, 225851433717, 190392490709135, 225851433717, 317811, 21, 1, ...
Links
- Reinhard Zumkeller, Rows n=0..14 of triangle, flattened
- R. Whitney, Problem H-254, Fib. Quart., 13 (1975), p. 281.
Programs
-
Haskell
a045995 n k = a045995_tabl !! n !! k a045995_row n = a045995_tabl !! n a045995_tabl = map (map (a000045 . fromInteger)) a007318_tabl -- Reinhard Zumkeller, Dec 29 2011
-
Maple
A045995 := proc(n,k) combinat[fibonacci](binomial(n,k)) ; end proc: # R. J. Mathar, Dec 03 2014
-
Mathematica
Flatten[Table[Fibonacci[Binomial[n,k]],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Dec 31 2013 *)
Formula
Take Pascal triangle (A007318) and replace each i by Fibonacci(i): a(n,k)=Fibonacci(binomial(n,k)).
Extensions
More terms from David W. Wilson