A046024 a(n) = smallest k such that Sum_{ i = 1..k } 1/prime(i) exceeds n.
1, 3, 59, 361139, 43922730588128390
Offset: 0
Links
- E. Bach, D. Klyve, and J. P. Sorenson, Computing prime harmonic sums, Math. Comp. 78 (2009) 2283-2305.
- Eric Weisstein's World of Mathematics, Prime Number.
- Eric Weisstein's World of Mathematics, Harmonic Series of Primes.
Crossrefs
Programs
-
Mathematica
Table[m = 1; s = 0; While[(s = s + 1/Prime[m]) <= n, m++]; m, {n, 0, 4}] (* Robert Price, Mar 27 2019 *)
-
PARI
a(n)=my(t); forprime(p=2,, t+=1./p; if(t>n, return(primepi(p)))) \\ Charles R Greathouse IV, Apr 29 2015
Formula
From Jonathan Sondow, Apr 17 2013: (Start)
a(n) = e^(e^(n + O(1))), see comment in A223037. [corrected by Charles R Greathouse IV, Aug 22 2013] (End)
a(n) = A103591(2*n). - Michel Marcus, Aug 22 2013
Extensions
a(4) found by Tomás Oliveira e Silva (tos(AT)det.ua.pt), using the fourth term of A016088. - Dec 14 2005
a(0) from Jonathan Sondow, Apr 16 2013
Comments