cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046113 Coefficients in expansion of theta_3(q) * theta_3(q^6) in powers of q.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 2, 4, 0, 2, 4, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 4, 0, 2, 6, 0, 0, 4, 0, 0, 4, 0, 4, 0, 0, 2, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 2, 8, 0, 0, 4, 0, 4, 0, 0, 4, 2, 0, 0, 0, 0, 0, 8, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0, 4, 4, 0, 4, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 18 2002

Keywords

Comments

Number of representations of n as a sum of six times a square and a square. - Ralf Stephan, May 14 2007
a(n) < 2 if and only if n is in A002480. a(n) > 0 if and only if n is in A002481. - Michael Somos, Mar 01 2011

Examples

			G.f. = 1 + 2*x + 2*x^4 + 2*x^6 + 4*x^7 + 2*x^9 + 4*x^10 + 4*x^15 + 2*x^16 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p 102 eq 9.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^6], {q, 0, n}]; (* Michael Somos, Apr 19 2015 *)
  • PARI
    {a(n) = my(G); if( n<0, 0, G = [ 1, 0; 0, 6]; polcoeff( 1 + 2 * x * Ser( qfrep( G, n)), n))}; /* Michael Somos, Mar 01 2011 */

Formula

G.f.: Sum_{ i, j = -oo..+oo } q^(i^2 + 6*j^2).
a(n) = A000377(n) + A115660(n). - Michael Somos, Mar 01 2011
a(0) = 1, a(n) = (1+(-1)^t)*b(n) for n > 0, where t is the number of prime factors of n, counting multiplicity, which are == 2,3,5,11 (mod 24), and b() is multiplicative with b(p^e) = (e+1) for primes p == 1,5,7,11 (mod 24) and b(p^e) = (1+(-1)^e)/2 for primes p == 13,17,19,23 (mod 24). (This formula is Corollary 4.2 in the Berkovich-Yesilyurt paper). - Jeremy Lovejoy, Nov 14 2024