cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046131 Areas of scalene integer Heronian triangles (A046128, A046129, A046130) sorted by increasing c and b.

Original entry on oeis.org

6, 24, 30, 54, 24, 84, 36, 60, 66, 42, 96, 84, 126, 90, 150, 84, 120, 36, 204, 210, 210, 60, 216, 132, 96, 336, 72, 144, 240, 294, 84, 252, 360, 114, 156, 180, 210, 120, 210, 420, 168, 270, 264, 168, 384, 240, 468, 126, 180, 336, 336, 504, 264, 330, 486, 216
Offset: 0

Views

Author

Keywords

Comments

This is the ordering of triangles used for A316841.

Crossrefs

The sides are given by A046128, A046129, A046130.
Range of values: A383413.

Programs

  • Mathematica
    sideMax = 60; r[c_] := Reap[Do[ p = (a + b + c)/2; red = Reduce[ area > 1 && a < b < c && area^2 == p*(p - a)*(p - b)*(p - c), area, Integers]; If[red =!= False, sol = {a, b, c, area} /. {ToRules[red]}; Sow[sol]], {b, 1, c - 1}, {a, c - b, b - 1}]]; triangles = Flatten[ Reap[ Do[rc = r[c]; If[rc[[2]] =!= {}, Sow[rc[[2, 1]]]], {c, 5, sideMax}]][[2, 1]] , 2]; Sort[ triangles, Which[#1[[3]] < #2[[3]], True, #1[[3]] > #2[[3]], False, #1[[2]] < #2[[2]], True,  #1[[2]] > #2[[2]], False, #1[[1]] <= #2[[1]], True, True, False] &][[All, 4]] (* Jean-François Alcover, Oct 29 2012 *)