cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A070086 Areas of integer triangles [A070080(n), A070081(n), A070082(n)], rounded values.

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 2, 3, 4, 4, 4, 2, 4, 4, 6, 5, 6, 7, 3, 5, 5, 7, 8, 6, 7, 8, 9, 3, 6, 6, 9, 7, 10, 11, 7, 9, 10, 11, 12, 4, 6, 8, 10, 8, 12, 12, 14, 8, 10, 12, 13, 12, 15, 16, 4, 7, 9, 12, 10, 14, 10, 15, 16, 17, 9, 12, 13, 15, 14, 17, 18, 19, 5, 8, 10
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

Triangles [A070080(A070142(n)), A070081(A070142(n)), A070082(A070142(n))] have integer areas = a(A070142(k)) = A070149(k).

Examples

			[A070080(25), A070081(25), A070082(25)] = [3,5,6] and s = A070083(25)/2 = (3+5+6)/2 = 7: a(25) = sqrt(s*(s-3)*(s-5)*(s-6)) = sqrt(7*(7-3)*(7-5)*(7-6)) = sqrt(7*4*2*1) = sqrt(56) = 7.48331, rounded = 7.
		

Crossrefs

The sides are given by A070080, A070081, A070082.
See A135622 for values signifying the precise area and further crossrefs.

Programs

  • Mathematica
    m = 50; (* max perimeter *)
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]]&];
    area[{a_, b_, c_}] := With[{p = (a+b+c)/2}, Sqrt[p(p-a)(p-b)(p-c)] // Round];
    area /@ triangles (* Jean-François Alcover, Oct 03 2021 *)

Formula

a(n) = sqrt(s*(s-u)*(s-v)*(s-w)), where u=A070080(n), v=A070081(n), w=A070082(n) and s = A070083(n)/2 = (u+v+w)/2.

A055595 Area of triangles with integer sides and positive integer area, ordered by longest side, then second longest side and finally shortest side.

Original entry on oeis.org

6, 12, 12, 24, 48, 30, 60, 54, 24, 84, 48, 36, 60, 120, 108, 66, 42, 96, 84, 126, 60, 108, 192, 90, 150, 84, 168, 120, 36, 204, 240, 210, 210, 60, 120, 216, 132, 300, 96, 336, 72, 192, 144, 240, 480, 294, 84, 252, 360, 432, 114, 156, 180, 210, 420, 120, 210, 420
Offset: 1

Views

Author

Henry Bottomley, May 26 2000

Keywords

Comments

This is the ordering of triangles used for A316841.

Crossrefs

The sides are given by A055592, A055593, A055594.
Range of values: A188158.

Programs

  • Mathematica
    max = 42; triangles = Reap[Do[s = (a+b+c)/2; area = Sqrt[s*(s-a)*(s-b)*(s-c)]; If[IntegerQ[area] && area > 0, Sow[{a, b, c, area}]], {a, 1, max}, {b, a, max}, {c, b, max}]][[2, 1]]; A055595 = Sort[triangles, #1[[3]]*max^2 + #1[[2]]*max + #1[[1]] < #2[[3]]* max^2 + #2[[2]]*max + #2[[1]] &][[All, 4]](* Jean-François Alcover, Jun 12 2012 *)

Formula

a(n) = sqrt(s(n)*(s(n)-A055592(n))*(s(n)-A055593(n))*(s(n)-A055594(n))) where s(n) = (A055592(n)+A055593(n)+A055594(n))/2 i.e. half the perimeter of the triangle

A230223 Primes p such that 3*p-4, 3*p-10, and 3*p-14 are all prime.

Original entry on oeis.org

7, 11, 17, 19, 31, 37, 47, 59, 79, 107, 131, 151, 157, 229, 317, 367, 409, 431, 479, 499, 521, 541, 739, 787, 1031, 1181, 1307, 1381, 1487, 1601, 1697, 1747, 1951, 2551, 2749, 2767, 2917, 3251, 3391, 3449, 3581, 3931, 4217, 4349, 4447, 4567, 4639, 4721, 4909, 4967
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 12 2013

Keywords

Comments

Conjecture: Any even number greater than 35 can be written as a sum of four terms of this sequence.
Primes in the sequence should be sparser than twin primes although this has not been proved.

Examples

			a(1) = 7 since 3*7-4 = 17, 3*7-10 = 11 and 3*7-14 = 7 are prime.
		

Crossrefs

Programs

  • Mathematica
    RQ[n_]:=n>5&&PrimeQ[3n-4]&&PrimeQ[3n-10]&&PrimeQ[3n-14]
    m=0
    Do[If[RQ[Prime[n]],m=m+1;Print[m," ",Prime[n]]],{n,1,1000}]
    Select[Prime[Range[700]],AllTrue[3#-{4,10,14},PrimeQ]&] (* Harvey P. Dale, Sep 29 2023 *)
  • PARI
    is(p)=isprime(p) && isprime(3*p-4) && isprime(3*p-10) && isprime(3*p-14) \\ Charles R Greathouse IV, Oct 12 2013

A046128 Smallest side a of scalene integer Heronian triangles sorted by increasing c and b.

Original entry on oeis.org

3, 6, 5, 9, 4, 13, 9, 8, 11, 7, 12, 10, 13, 12, 15, 7, 10, 3, 17, 17, 20, 6, 18, 11, 8, 26, 5, 18, 16, 21, 8, 15, 25, 19, 15, 13, 12, 16, 17, 25, 10, 15, 22, 14, 24, 13, 25, 15, 9, 17, 20, 26, 15, 17, 27, 12, 13, 39, 29, 24, 30, 21, 39, 14, 27, 26, 20, 25, 13, 24, 27, 25, 37
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    sideMax = 60; r[c_] := Reap[Do[ p = (a + b + c)/2; red = Reduce[ area > 1 && a < b < c && area^2 == p*(p - a)*(p - b)*(p - c), area, Integers]; If[red =!= False, sol = {a, b, c, area} /. {ToRules[red]}; Sow[sol]], {b, 1, c - 1}, {a, c - b, b - 1}]]; triangles = Flatten[ Reap[ Do[rc = r[c]; If[rc[[2]] =!= {}, Sow[rc[[2, 1]]]], {c, 5, sideMax}]][[2, 1]] , 2]; Sort[ triangles, Which[#1[[3]] < #2[[3]], True, #1[[3]] > #2[[3]], False, #1[[2]] < #2[[2]], True, #1[[2]] > #2[[2]], False, #1[[1]] <= #2[[1]], True, True, False] &][[All, 1]] (* Jean-François Alcover, Oct 29 2012 *)

A046129 Middle side b of scalene integer Heronian triangles sorted by increasing c and b.

Original entry on oeis.org

4, 8, 12, 12, 13, 14, 10, 15, 13, 15, 16, 17, 20, 17, 20, 24, 24, 25, 25, 25, 21, 25, 24, 25, 26, 28, 29, 20, 30, 28, 29, 34, 29, 20, 26, 30, 35, 25, 28, 34, 35, 36, 26, 30, 32, 37, 39, 28, 40, 40, 34, 40, 37, 39, 36, 39, 40, 42, 35, 34, 40, 41, 41, 48, 30, 35, 37, 38, 40
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    sideMax = 60; r[c_] := Reap[Do[ p = (a + b + c)/2; red = Reduce[ area > 1 && a < b < c && area^2 == p*(p - a)*(p - b)*(p - c), area, Integers]; If[red =!= False, sol = {a, b, c, area} /. {ToRules[red]}; Sow[sol]], {b, 1, c - 1}, {a, c - b, b - 1}]]; triangles = Flatten[ Reap[ Do[rc = r[c]; If[rc[[2]] =!= {}, Sow[rc[[2, 1]]]], {c, 5, sideMax}]][[2, 1]] , 2]; Sort[ triangles, Which[#1[[3]] < #2[[3]], True, #1[[3]] > #2[[3]], False, #1[[2]] < #2[[2]], True,  #1[[2]] > #2[[2]], False, #1[[1]] <= #2[[1]], True, True, False] &][[All, 2]] (* Jean-François Alcover, Oct 29 2012 *)

A046130 Largest side c of a scalene integer Heronian triangles sorted by increasing c and b.

Original entry on oeis.org

5, 10, 13, 15, 15, 15, 17, 17, 20, 20, 20, 21, 21, 25, 25, 25, 26, 26, 26, 28, 29, 29, 30, 30, 30, 30, 30, 34, 34, 35, 35, 35, 36, 37, 37, 37, 37, 39, 39, 39, 39, 39, 40, 40, 40, 40, 40, 41, 41, 41, 42, 42, 44, 44, 45, 45, 45, 45, 48, 50, 50, 50, 50, 50, 51, 51, 51, 51, 51
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    sideMax = 60; r[c_] := Reap[Do[ p = (a + b + c)/2; red = Reduce[ area > 1 && a < b < c && area^2 == p*(p - a)*(p - b)*(p - c), area, Integers]; If[red =!= False, sol = {a, b, c, area} /. {ToRules[red]}; Sow[sol]], {b, 1, c - 1}, {a, c - b, b - 1}]]; triangles = Flatten[ Reap[ Do[rc = r[c]; If[rc[[2]] =!= {}, Sow[rc[[2, 1]]]], {c, 5, sideMax}]][[2, 1]] , 2]; Sort[ triangles, Which[#1[[3]] < #2[[3]], True, #1[[3]] > #2[[3]], False, #1[[2]] < #2[[2]], True,  #1[[2]] > #2[[2]], False, #1[[1]] <= #2[[1]], True, True, False] &][[All, 3]] (* Jean-François Alcover, Oct 29 2012 *)

A068966 Areas of integer Heronian triangles [prime(A068964(n)), prime(A068964(n)+1), A068965(n)].

Original entry on oeis.org

6, 66, 3204, 6810, 37716, 72006, 182430, 532236, 370614, 2155134, 3203694, 6353634, 51712890, 42020844, 28698786, 33163770, 55637466, 125033580, 172985436, 105470250, 151375626, 178631034, 185921166, 217064574, 939603126, 376267326, 1812742734, 2193232470, 853918566
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 30 2002

Keywords

Examples

			A068964(3) = 24: [prime(24), prime(25), A068965(3)] = [89,97,170], with s = (89+97+170)/2 = 178: Area^2 = s*(s-89)*(s-81)*(s-170) = 178*89*81*8 = 10265616 = 3204*3204, therefore a(3) = 3204.
		

Crossrefs

Extensions

Terms a(13) and beyond from Giovanni Resta, Apr 20 2020

A068969 Areas of integer Heronian triangles [A068967(n), prime(A068967(n)), A068968(n)].

Original entry on oeis.org

6, 210, 528, 1680, 1800, 5304, 6930, 3150, 4650, 21000, 32760, 69342, 53550, 2170560, 2200200, 2501070, 646800, 4777080, 4796550, 11865840, 12243840, 12863760, 18064200, 30510480, 3232320, 66023100, 70691400, 47977380, 144357720, 185560830, 156128700, 320843040
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 30 2002

Keywords

Examples

			a(5) = 37: [37, A000040(37), A068968(5)] = [37,157,130], with s = (36+157+130)/2 = 162: Area^2 = s*(s-37)*(s-157)*(s-130) = 162*125*5*32 = 3240000 = 1800*1800, therefore a(5) = 1800.
		

Crossrefs

Programs

  • Mathematica
    area[{a_, b_, c_}] := Block[{s = (a + b + c)/2}, Sqrt[s (s-a) (s-b) (s-c)]]; zz[n_] := Block[{s, p = Prime[n], t, z, A}, s = Solve[(n^2 - 2 n p + p^2 - z) (z - n^2 - 2 n p - p^2) == t^2 && z>0 && t>0, {t, z}, Integers]; If[s == {}, {}, z = Sort@ Select[Sqrt[z /. s], IntegerQ]]; Select[Table[{n, p, e}, {e, z}], IntegerQ[A = area[#]] && A > 0 &]]; area /@ Join @@ Parallelize@ Array[zz, 4300] (* Giovanni Resta, Apr 20 2020 *)

Extensions

Erroneous term 25070627 removed and more terms from Giovanni Resta, Apr 20 2020

A135622 16*Area^2 of integer triangles [A070080(n),A070081(n),A070082(n)].

Original entry on oeis.org

3, 15, 48, 35, 63, 128, 63, 135, 243, 240, 320, 99, 231, 275, 495, 384, 576, 768, 143, 351, 455, 819, 975, 560, 896, 1008, 1344, 195, 495, 675, 1215, 735, 1575, 1875, 768, 1280, 1536, 2048, 2304, 255, 663, 935, 1683, 1071, 2295, 2499, 2975, 1008, 1728
Offset: 1

Views

Author

Franz Vrabec, Feb 29 2008

Keywords

Examples

			A070080(4)=1, A070081(4)=3, A070082(4)=3, so a(4)=(1+3+3)*(-1+3+3)*(1-3+3)*(1+3-3)=35.
		

Crossrefs

See the formula section for the relationships with A070080, A070081, A070082, A070086.
Cf. A317182 (range of values), A331011 (nonunique values), A331250 (counts triangles by area).
Cf. A316853 (with terms ordered as for A316841), and using this order for other sets of triangles: A046131, A055595, A070786.

Formula

a(n)=(u+v+w)*(-u+v+w)*(u-v+w)*(u+v-w), where u=A070080(n), v=A070081(n), w=A070082(n).
A070086(n) = round(sqrt(a(n))/4).

A336272 Length of longest side of a primitive square Heron triangle, i.e., a triangle with relatively prime integer sides and area the square of a positive integer.

Original entry on oeis.org

17, 26, 120, 370, 392, 567, 680, 697, 847, 1066, 1089, 1183, 1233, 1299, 1371, 1448, 1904, 2009, 2169, 2176, 2281, 2307, 2535, 2600, 2619, 2785, 2845, 2993, 3150, 3370, 3825, 3944, 3983, 4035, 4095, 4290, 4706, 4760, 4879, 4905, 5655, 5811, 5835, 6137, 6375, 6570, 6936, 7202, 7913, 7995
Offset: 1

Views

Author

James R. Buddenhagen, Jul 15 2020

Keywords

Comments

The triangle [a(23)=2535, 2329, 544] with gcd(2329, 544) = 17 is the first square Heron triangle for which the 3 sides [i, j, k] are not pairwise coprime, i.e., max(gcd(i,j), gcd(i,k), gcd(j,k)) > 1, but gcd(i,j,k) = 1. Are there more square Heron triangles with this property? - Hugo Pfoertner, Jul 18 2020
There are other square Heron triangles with this property, e.g. [a(31)=3825, 2704, 1921] with gcd(1921, 3825) = 17; [a(??)=41460721, 38639097, 17536520] with gcd(38639097, 17536520) = 41; [a(??)=153915025, 139641489, 25224736] with gcd(25224736, 153915025) = 17; and [a(??)=4325561361, 3459908000, 1430190961] with gcd(3459908000, 1430190961) = 73. - James R. Buddenhagen, Jul 20 2020
Terms are given with multiplicity, e.g. if there are two primitive square Heron triangles with equal longest sides, that longest side is listed as a term of the sequence twice (this is very rare). - James R. Buddenhagen, Jul 21 2020

Examples

			17 is in the sequence because the triangle with sides [17, 10, 9] has longest side 17 and area 6^2, the square of a positive integer; 26 is in the sequence because the triangle with sides [26, 25, 3] has longest side 26 and has area 6^2, the square of a positive integer.
Triangles with sides [a, b, c] corresponding to the first 8 terms of this sequence are:  [17, 10, 9], [26, 25, 3], [120, 113, 17], [370, 357, 41], [392, 353, 255], [567, 424, 305], [680, 441, 337], [697, 657, 104].
		

Crossrefs

Programs

  • Maple
    # find all square Heron triangles whose longest side is between small and big
    small:=1: big:=700:
    A336272:=[]:triangles:=[]:
    areasq16:=(a+b+c)*(a+b-c)*(a-b+c)*(-a+b+c):
    # a>=b>=c
    for a from small to big do:
      for b from ceil((a+1)/2) to a do:
        for c from a-b+1 to b do:
          if issqr(areasq16) and issqr(sqrt(areasq16)) and igcd(a,b,c)=1 then
            A336272:=[op(A336272),a]:
            triangles:=[op(triangles),[a,b,c]]:
          end if:
        od:
      od:
    od: A336272;triangles;
  • PARI
    for(a=1,1200,for(b=ceil((a+1)/2),a,for(c=a-b+1,b,if(gcd([a,b,c])==1,if(ispower((a+b+c)*(a+b-c)*(a-b+c)*(b+c-a),4),print1(a,", ")))))) \\ Hugo Pfoertner, Jul 18 2020

Extensions

a(42)-a(50) from Hugo Pfoertner, Jul 18 2020
Showing 1-10 of 10 results.