cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A188158 Area A of the triangles such that A and the sides are integers.

Original entry on oeis.org

6, 12, 24, 30, 36, 42, 48, 54, 60, 66, 72, 84, 90, 96, 108, 114, 120, 126, 132, 144, 150, 156, 168, 180, 192, 198, 204, 210, 216, 234, 240, 252, 264, 270, 288, 294, 300, 306, 324, 330, 336, 360, 378, 384, 390, 396, 408, 420, 432, 456, 462, 468, 480, 486, 504, 510, 522, 528
Offset: 1

Views

Author

Michel Lagneau, Mar 22 2011

Keywords

Comments

The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. A given area often corresponds to more than one triangle; for example, a(9) = 60 for the triangles (a,b,c) = (6,25,29), (8,17,15), (13,13,10) and (13,13,24).
If only primitive integer triangles (that is, the lengths of the sides are coprime) are considered, then the possible areas are 6 times the terms in A083875. - T. D. Noe, Mar 23 2011

Examples

			a(3) = 24 because the area of the triangle whose sides are 4, 15, 13 is given by sqrt(p(p-4)(p-15)(p-13)) = 24, where p = (4 + 15 + 13)/2 = 16.
		

Crossrefs

Programs

  • Maple
    # storage of areas in T(i)
    T:=array(1..4000):nn:=100:k:=1:for a from 1
      to nn do: for b from 1 to nn do: for c from 1 to nn do: p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c):   if x>0 then x1:=abs(x):s:=sqrt(x1) :else fi:if s=floor(s) then T[k]:=s:k:=k+1:else
      fi:od:od:od:
    # sort of T(i)
    for jj from 1 to k-1 do: ii:=jj:for k1 from  ii+1 to k-1 do:if T[ii]>T[k1] then ii:=k1:else fi:od: m:=T[jj]:T[jj]:=T[ii]:T[ii]:=m:od:liste:=convert(T,set):print(liste):
    # second program:
    isA188158 := proc(A::integer)
        local Asqr, s,a,b,c ;
        Asqr := A^2 ;
        for s in numtheory[divisors](Asqr) do
            if s^2> A then
            for a from 1 to s-1 do
                if modp(Asqr,s-a) = 0 then
                    for b from a to s-1 do
                        c := 2*s-a-b ;
                        if s*(s-a)*(s-b)*(s-c) = Asqr then
                            return true ;
                        end if;
                    end do:
                end if;
            end do:
            end if;
        end do:
        false ;
    end proc:
    for n from 3 to 600 do
        if isA188158(n) then
            printf("%d,\n",n) ;
        end if;
    end do: # R. J. Mathar, May 02 2018
  • Mathematica
    nn = 528; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 <= nn^2 && IntegerQ[Sqrt[area2]], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst] (* T. D. Noe, Mar 23 2011 *)

A070086 Areas of integer triangles [A070080(n), A070081(n), A070082(n)], rounded values.

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 2, 3, 4, 4, 4, 2, 4, 4, 6, 5, 6, 7, 3, 5, 5, 7, 8, 6, 7, 8, 9, 3, 6, 6, 9, 7, 10, 11, 7, 9, 10, 11, 12, 4, 6, 8, 10, 8, 12, 12, 14, 8, 10, 12, 13, 12, 15, 16, 4, 7, 9, 12, 10, 14, 10, 15, 16, 17, 9, 12, 13, 15, 14, 17, 18, 19, 5, 8, 10
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

Triangles [A070080(A070142(n)), A070081(A070142(n)), A070082(A070142(n))] have integer areas = a(A070142(k)) = A070149(k).

Examples

			[A070080(25), A070081(25), A070082(25)] = [3,5,6] and s = A070083(25)/2 = (3+5+6)/2 = 7: a(25) = sqrt(s*(s-3)*(s-5)*(s-6)) = sqrt(7*(7-3)*(7-5)*(7-6)) = sqrt(7*4*2*1) = sqrt(56) = 7.48331, rounded = 7.
		

Crossrefs

The sides are given by A070080, A070081, A070082.
See A135622 for values signifying the precise area and further crossrefs.

Programs

  • Mathematica
    m = 50; (* max perimeter *)
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]]&];
    area[{a_, b_, c_}] := With[{p = (a+b+c)/2}, Sqrt[p(p-a)(p-b)(p-c)] // Round];
    area /@ triangles (* Jean-François Alcover, Oct 03 2021 *)

Formula

a(n) = sqrt(s*(s-u)*(s-v)*(s-w)), where u=A070080(n), v=A070081(n), w=A070082(n) and s = A070083(n)/2 = (u+v+w)/2.

A046131 Areas of scalene integer Heronian triangles (A046128, A046129, A046130) sorted by increasing c and b.

Original entry on oeis.org

6, 24, 30, 54, 24, 84, 36, 60, 66, 42, 96, 84, 126, 90, 150, 84, 120, 36, 204, 210, 210, 60, 216, 132, 96, 336, 72, 144, 240, 294, 84, 252, 360, 114, 156, 180, 210, 120, 210, 420, 168, 270, 264, 168, 384, 240, 468, 126, 180, 336, 336, 504, 264, 330, 486, 216
Offset: 0

Views

Author

Keywords

Comments

This is the ordering of triangles used for A316841.

Crossrefs

The sides are given by A046128, A046129, A046130.
Range of values: A383413.

Programs

  • Mathematica
    sideMax = 60; r[c_] := Reap[Do[ p = (a + b + c)/2; red = Reduce[ area > 1 && a < b < c && area^2 == p*(p - a)*(p - b)*(p - c), area, Integers]; If[red =!= False, sol = {a, b, c, area} /. {ToRules[red]}; Sow[sol]], {b, 1, c - 1}, {a, c - b, b - 1}]]; triangles = Flatten[ Reap[ Do[rc = r[c]; If[rc[[2]] =!= {}, Sow[rc[[2, 1]]]], {c, 5, sideMax}]][[2, 1]] , 2]; Sort[ triangles, Which[#1[[3]] < #2[[3]], True, #1[[3]] > #2[[3]], False, #1[[2]] < #2[[2]], True,  #1[[2]] > #2[[2]], False, #1[[1]] <= #2[[1]], True, True, False] &][[All, 4]] (* Jean-François Alcover, Oct 29 2012 *)

A055592 Longest side of congruent triangles with integer sides and positive integer area, ordered by longest side, then second longest side and finally shortest side.

Original entry on oeis.org

5, 6, 8, 10, 12, 13, 13, 15, 15, 15, 16, 17, 17, 17, 18, 20, 20, 20, 21, 21, 24, 24, 24, 25, 25, 25, 25, 26, 26, 26, 26, 28, 29, 29, 30, 30, 30, 30, 30, 30, 30, 32, 34, 34, 34, 35, 35, 35, 36, 36, 37, 37, 37, 37, 37, 39, 39, 39, 39, 39, 39, 40, 40, 40, 40, 40, 40, 40, 41, 41
Offset: 1

Views

Author

Henry Bottomley, May 26 2000

Keywords

Crossrefs

Programs

  • Mathematica
    max = 41; triangles = Reap[Do[s = (a+b+c)/2; area = Sqrt[s*(s-a)*(s-b)*(s-c)]; If[IntegerQ[area] && area > 0, Sow[{a, b, c, area}]], {a, 1, max}, {b, a, max}, {c, b, max}]][[2, 1]]; A055592 = Sort[triangles, #1[[3]]*max^2 + #1[[2]]*max + #1[[1]] < #2[[3]]* max^2 + #2[[2]]*max + #2[[1]] &][[All, 3]](* Jean-François Alcover, Jun 12 2012 *)

A055593 Second longest side of congruent triangles with integer sides and positive integer area, ordered by longest side, then second longest side and finally shortest side.

Original entry on oeis.org

4, 5, 5, 8, 10, 12, 13, 12, 13, 14, 10, 10, 15, 17, 15, 13, 15, 16, 17, 20, 13, 15, 20, 17, 20, 24, 25, 24, 25, 25, 26, 25, 21, 25, 17, 24, 25, 25, 26, 28, 29, 20, 20, 30, 34, 28, 29, 34, 29, 30, 20, 26, 30, 35, 37, 25, 28, 34, 35, 36, 39, 25, 26, 29, 30, 32, 37, 39, 28, 40
Offset: 1

Views

Author

Henry Bottomley, May 26 2000

Keywords

Crossrefs

Programs

  • Mathematica
    max = 41; triangles = Reap[Do[s = (a+b+c)/2; area = Sqrt[s*(s-a)*(s-b)*(s-c)]; If[IntegerQ[area] && area > 0, Sow[{a, b, c, area}]], {a, 1, max}, {b, a, max}, {c, b, max}]][[2, 1]]; A055593 = Sort[triangles, #1[[3]]*max^2 + #1[[2]]*max + #1[[1]] < #2[[3]]* max^2 + #2[[2]]*max + #2[[1]] &][[All, 2]](* Jean-François Alcover, Jun 12 2012 *)

A055594 Shortest side of congruent triangles with integer sides and positive integer area, ordered by longest side, then second longest side and finally shortest side.

Original entry on oeis.org

3, 5, 5, 6, 10, 5, 10, 9, 4, 13, 10, 9, 8, 16, 15, 11, 7, 12, 10, 13, 13, 15, 20, 12, 15, 7, 14, 10, 3, 17, 20, 17, 20, 6, 17, 18, 11, 25, 8, 26, 5, 20, 18, 16, 32, 21, 8, 15, 25, 30, 19, 15, 13, 12, 24, 16, 17, 25, 10, 15, 30, 25, 22, 29, 14, 24, 13, 25, 15, 9, 17, 18, 29, 20, 35
Offset: 1

Views

Author

Henry Bottomley, May 26 2000

Keywords

Crossrefs

Programs

  • Mathematica
    max = 42; triangles = Reap[Do[s = (a+b+c)/2; area = Sqrt[s*(s-a)*(s-b)*(s-c)]; If[IntegerQ[area] && area > 0, Sow[{a, b, c, area}]], {a, 1, max}, {b, a, max}, {c, b, max}]][[2, 1]]; A055594 = Sort[triangles, #1[[3]]*max^2 + #1[[2]]*max + #1[[1]] < #2[[3]]* max^2 + #2[[2]]*max + #2[[1]] &][[All, 1]](* Jean-François Alcover, Jun 12 2012 *)

A072294 Areas of primitive Heronian triangles sorted by longest side, then by middle side and finally shortest side.

Original entry on oeis.org

6, 12, 12, 30, 60, 24, 84, 36, 60, 120, 66, 42, 84, 126, 60, 90, 84, 168, 36, 204, 210, 210, 60, 120, 132, 72, 84, 252, 360, 114, 156, 180, 210, 420, 120, 210, 420, 168, 420, 240, 468, 126, 180, 336, 360, 420, 264, 330, 252, 168, 504, 420, 780, 420, 306, 456, 156
Offset: 1

Views

Author

Lekraj Beedassy, Jul 12 2002

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 200; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s] && GCD[a, b, c] == 1, area2 = s (s - a) (s - b) (s - c); If[area2 > 0 && IntegerQ[Sqrt[area2]], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; lst (* T. D. Noe, Mar 23 2011 *)

Extensions

More terms from Ray Chandler, Jul 02 2004

A070786 Area of triangles with sides whose squares are integers and with positive integer area, ordered by longest side, then second longest side and finally shortest side.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 1, 2, 3, 4, 3, 2, 1, 3, 3, 6, 2, 4, 2, 4, 6, 1, 3, 5, 2, 4, 3, 6, 2, 3, 1, 5, 1, 4, 4, 2, 6, 7, 3, 6, 8, 6, 3, 1, 3, 5, 6, 4, 8, 2, 5, 10, 1, 4, 2, 6, 3, 7, 9, 5, 9, 7, 3, 2, 4, 1, 8, 9, 5, 7, 10, 3, 6, 9, 12, 4, 2, 8, 6, 4, 2, 10, 8, 12, 6, 2, 6, 3, 1, 7, 5, 10, 11, 4, 8, 7, 14, 3, 6, 3
Offset: 1

Views

Author

Henry Bottomley, May 07 2002

Keywords

Examples

			a(6)=3 since the triangle with sides sqrt(9), sqrt(8) and sqrt(5) has area 3.
		

Crossrefs

A068966 Areas of integer Heronian triangles [prime(A068964(n)), prime(A068964(n)+1), A068965(n)].

Original entry on oeis.org

6, 66, 3204, 6810, 37716, 72006, 182430, 532236, 370614, 2155134, 3203694, 6353634, 51712890, 42020844, 28698786, 33163770, 55637466, 125033580, 172985436, 105470250, 151375626, 178631034, 185921166, 217064574, 939603126, 376267326, 1812742734, 2193232470, 853918566
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 30 2002

Keywords

Examples

			A068964(3) = 24: [prime(24), prime(25), A068965(3)] = [89,97,170], with s = (89+97+170)/2 = 178: Area^2 = s*(s-89)*(s-81)*(s-170) = 178*89*81*8 = 10265616 = 3204*3204, therefore a(3) = 3204.
		

Crossrefs

Extensions

Terms a(13) and beyond from Giovanni Resta, Apr 20 2020

A068969 Areas of integer Heronian triangles [A068967(n), prime(A068967(n)), A068968(n)].

Original entry on oeis.org

6, 210, 528, 1680, 1800, 5304, 6930, 3150, 4650, 21000, 32760, 69342, 53550, 2170560, 2200200, 2501070, 646800, 4777080, 4796550, 11865840, 12243840, 12863760, 18064200, 30510480, 3232320, 66023100, 70691400, 47977380, 144357720, 185560830, 156128700, 320843040
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 30 2002

Keywords

Examples

			a(5) = 37: [37, A000040(37), A068968(5)] = [37,157,130], with s = (36+157+130)/2 = 162: Area^2 = s*(s-37)*(s-157)*(s-130) = 162*125*5*32 = 3240000 = 1800*1800, therefore a(5) = 1800.
		

Crossrefs

Programs

  • Mathematica
    area[{a_, b_, c_}] := Block[{s = (a + b + c)/2}, Sqrt[s (s-a) (s-b) (s-c)]]; zz[n_] := Block[{s, p = Prime[n], t, z, A}, s = Solve[(n^2 - 2 n p + p^2 - z) (z - n^2 - 2 n p - p^2) == t^2 && z>0 && t>0, {t, z}, Integers]; If[s == {}, {}, z = Sort@ Select[Sqrt[z /. s], IntegerQ]]; Select[Table[{n, p, e}, {e, z}], IntegerQ[A = area[#]] && A > 0 &]]; area /@ Join @@ Parallelize@ Array[zz, 4300] (* Giovanni Resta, Apr 20 2020 *)

Extensions

Erroneous term 25070627 removed and more terms from Giovanni Resta, Apr 20 2020
Showing 1-10 of 12 results. Next