A070081 Middle side of integer triangles [A070080(n) <= a(n) <= A070082(n)], sorted by perimeter, sides lexicographically ordered.
1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 3, 5, 4, 3, 4, 5, 4, 4, 6, 5, 4, 5, 4, 6, 5, 4, 5, 7, 6, 5, 6, 4, 5, 5, 7, 6, 5, 6, 5, 8, 7, 6, 7, 5, 6, 5, 6, 8, 7, 6, 7, 5, 6, 6, 9, 8, 7, 8, 6, 7, 5, 6, 7, 6, 9, 8, 7, 8, 6, 7, 6, 7, 10, 9, 8, 9, 7, 8, 6, 7, 8, 6, 7, 7, 10, 9, 8, 9, 7
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for the first 55 rows, flattened
- Reinhard Zumkeller, Integer-sided triangles
Crossrefs
Programs
-
Mathematica
m = 55 (* max perimeter *); sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2&]; triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]]&]; triangles[[All, 2]] (* Jean-François Alcover, Jul 09 2017 *)
Comments