A301384 Number of integer-sided triangles of area A188158(n).
1, 2, 2, 1, 2, 1, 2, 1, 4, 1, 1, 4, 2, 2, 2, 1, 4, 3, 1, 2, 1, 2, 4, 2, 2, 1, 1, 6, 3, 1, 5, 3, 3, 2, 2, 1, 4, 1, 2, 4, 8, 5, 1, 2, 1, 3, 1, 15, 2, 4, 2, 1, 5, 1, 6, 2, 1, 3, 4, 3, 1, 2, 2, 1, 2, 4, 5, 1, 5, 4, 1, 2, 3, 5, 1, 1, 1, 6, 2, 4, 2, 1, 2, 1, 17, 4, 1
Offset: 1
Keywords
Examples
a(9) = 4 because A188158(9) = 60 corresponding to 4 triangles (a, b, c) = (6, 25, 29), (8, 15, 17), (10, 13, 13) and (13, 13, 24) of area 60.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Triangle
Programs
-
Maple
A301384 := proc(A::integer) local Asqr, s,a,b,c,sol ; sol := 0 ; Asqr := A^2 ; for s in numtheory[divisors](Asqr) do if s^2> A then for a from 1 to s-1 do if modp(Asqr,s-a) = 0 then for b from a to s-1 do c := 2*s-a-b ; if s*(s-a)*(s-b)*(s-c) = Asqr and c >= b then sol := sol+1 ; end if; end do: end if; end do: end if; end do: sol ; end proc: for n from 3 to 600 do a301384 := A301384(n) ; if a301384 > 0 then printf("%d,\n",a301384) ; end if; end do: # R. J. Mathar, May 02 2018
-
Mathematica
nn=1000;lst={};lst2={};Do[s=(a+b+c)/2;If[IntegerQ[s],area2=s(s-a)(s-b)(s-c);If[0
Comments