cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A188158 Area A of the triangles such that A and the sides are integers.

Original entry on oeis.org

6, 12, 24, 30, 36, 42, 48, 54, 60, 66, 72, 84, 90, 96, 108, 114, 120, 126, 132, 144, 150, 156, 168, 180, 192, 198, 204, 210, 216, 234, 240, 252, 264, 270, 288, 294, 300, 306, 324, 330, 336, 360, 378, 384, 390, 396, 408, 420, 432, 456, 462, 468, 480, 486, 504, 510, 522, 528
Offset: 1

Views

Author

Michel Lagneau, Mar 22 2011

Keywords

Comments

The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. A given area often corresponds to more than one triangle; for example, a(9) = 60 for the triangles (a,b,c) = (6,25,29), (8,17,15), (13,13,10) and (13,13,24).
If only primitive integer triangles (that is, the lengths of the sides are coprime) are considered, then the possible areas are 6 times the terms in A083875. - T. D. Noe, Mar 23 2011

Examples

			a(3) = 24 because the area of the triangle whose sides are 4, 15, 13 is given by sqrt(p(p-4)(p-15)(p-13)) = 24, where p = (4 + 15 + 13)/2 = 16.
		

Crossrefs

Programs

  • Maple
    # storage of areas in T(i)
    T:=array(1..4000):nn:=100:k:=1:for a from 1
      to nn do: for b from 1 to nn do: for c from 1 to nn do: p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c):   if x>0 then x1:=abs(x):s:=sqrt(x1) :else fi:if s=floor(s) then T[k]:=s:k:=k+1:else
      fi:od:od:od:
    # sort of T(i)
    for jj from 1 to k-1 do: ii:=jj:for k1 from  ii+1 to k-1 do:if T[ii]>T[k1] then ii:=k1:else fi:od: m:=T[jj]:T[jj]:=T[ii]:T[ii]:=m:od:liste:=convert(T,set):print(liste):
    # second program:
    isA188158 := proc(A::integer)
        local Asqr, s,a,b,c ;
        Asqr := A^2 ;
        for s in numtheory[divisors](Asqr) do
            if s^2> A then
            for a from 1 to s-1 do
                if modp(Asqr,s-a) = 0 then
                    for b from a to s-1 do
                        c := 2*s-a-b ;
                        if s*(s-a)*(s-b)*(s-c) = Asqr then
                            return true ;
                        end if;
                    end do:
                end if;
            end do:
            end if;
        end do:
        false ;
    end proc:
    for n from 3 to 600 do
        if isA188158(n) then
            printf("%d,\n",n) ;
        end if;
    end do: # R. J. Mathar, May 02 2018
  • Mathematica
    nn = 528; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 <= nn^2 && IntegerQ[Sqrt[area2]], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst] (* T. D. Noe, Mar 23 2011 *)

A051516 Number of triangles with perimeter n having integer sides and area.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 4, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 3, 0, 2, 0, 0, 0, 4, 0, 1, 0, 0, 0, 3, 0, 0, 0, 5, 0, 1, 0, 1, 0, 2, 0, 5, 0, 0, 0, 1, 0, 1, 0, 4, 0, 0, 0, 8, 0, 0, 0, 1, 0, 5, 0, 0, 0, 0, 0, 5, 0, 6, 0, 5, 0, 0, 0, 2, 0, 0, 0, 12, 0, 1, 0
Offset: 1

Views

Author

Keywords

Comments

No such triangles with odd perimeter exist.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(1 - Ceiling[Sqrt[(n/2) (n/2 - i) (n/2 - k) (i + k - n/2)]] + Floor[Sqrt[(n/2) (n/2 - i) (n/2 - k) (i + k - n/2)]])*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 11 2019 *)

Formula

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (1 - ceiling(m) + floor(m)) * sign(floor((i+k)/(n-i-k+1))), where m = sqrt((n/2)*(n/2-i)*(n/2-k)*(i+k-n/2)). - Wesley Ivan Hurt, May 11 2019

A070139 Number of isosceles integer triangles with perimeter n having integral area.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A051516(n) - A024153(n).

Crossrefs

A070203 Number of scalene integer triangles with perimeter n having integral inradius.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 8, 0, 0, 0, 1, 0, 3
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A070201(n) - A070204(n).

Crossrefs

Programs

  • Ruby
    def A(n)
      cnt = 0
      (1..n / 3).each{|a|
        (a + 1..(n - a) / 2).each{|b|
          c = n - a - b
          if a + b > c && b < c
            s = n / 2r
            t = (s - a) * (s - b) * (s - c) / s
            if t.denominator == 1
              t = t.to_i
              cnt += 1 if Math.sqrt(t).to_i ** 2 == t
            end
          end
        }
      }
      cnt
    end
    def A070203(n)
      (1..n).map{|i| A(i)}
    end
    p A070203(100) # Seiichi Manyama, Oct 07 2017

A371973 a(n) is the number of distinct areas > 0 of triangles with integer sides and perimeter n.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 13, 19, 14, 21, 19, 23, 20, 27, 23, 30, 27, 32, 29, 35, 32, 39, 34, 44, 39, 48, 43, 52, 47, 55, 51, 60, 53, 63, 59, 69, 58, 74, 67, 78, 73, 84, 75, 90, 81, 92, 88, 101, 91, 108, 93, 112, 106
Offset: 3

Views

Author

Hugo Pfoertner, Apr 16 2024

Keywords

Crossrefs

See the formula section for the relationships with A026810, A070083, A135622 (which has many crossrefs related to areas of triangles).

Programs

  • PARI
    A2(a,b,c) = {my (s=(a+b+c)/2); s*(s-a)*(s-b)*(s-c)};
    a371973(n) = {my (A=List()); forpart (v=n, listput(A, A2(v[1],v[2],v[3])), [1,(n-1)\2], [3,3]); #Set(A)};
    
  • Python
    def A371973(n): return len(set((2*(b+c)-n)*(n-2*b)*(n-2*c) for c in range((n+2)//3, (n+1)//2) for b in range((n-c+1)//2, c+1))) # David Radcliffe, Aug 01 2025

Formula

a(n) = |{A135622(k) : A070083(k) = n}| = |{A135622(k) : A026810(n) < k <= A026810(n+1)}|. - Peter Munn, Jul 29 2025

Extensions

b-file corrected by David Radcliffe, Aug 01 2025

A301384 Number of integer-sided triangles of area A188158(n).

Original entry on oeis.org

1, 2, 2, 1, 2, 1, 2, 1, 4, 1, 1, 4, 2, 2, 2, 1, 4, 3, 1, 2, 1, 2, 4, 2, 2, 1, 1, 6, 3, 1, 5, 3, 3, 2, 2, 1, 4, 1, 2, 4, 8, 5, 1, 2, 1, 3, 1, 15, 2, 4, 2, 1, 5, 1, 6, 2, 1, 3, 4, 3, 1, 2, 2, 1, 2, 4, 5, 1, 5, 4, 1, 2, 3, 5, 1, 1, 1, 6, 2, 4, 2, 1, 2, 1, 17, 4, 1
Offset: 1

Views

Author

Michel Lagneau, Mar 20 2018

Keywords

Comments

Nonzero terms of A051584.

Examples

			a(9) = 4 because A188158(9) = 60 corresponding to 4 triangles (a, b, c) = (6, 25, 29), (8, 15, 17), (10, 13, 13) and (13, 13, 24) of area 60.
		

Crossrefs

Cf. A188158, A024153 (distinct side lengths), A051516, A051584, A051585.

Programs

  • Maple
    A301384 := proc(A::integer)
        local Asqr, s,a,b,c,sol ;
        sol := 0 ;
        Asqr := A^2 ;
        for s in numtheory[divisors](Asqr) do
            if s^2> A then
            for a from 1 to s-1 do
                if modp(Asqr,s-a) = 0 then
                    for b from a to s-1 do
                        c := 2*s-a-b ;
                        if s*(s-a)*(s-b)*(s-c) = Asqr and c >= b then
                            sol := sol+1 ;
                        end if;
                    end do:
                end if;
            end do:
            end if;
        end do:
        sol ;
    end proc:
    for n from 3 to 600 do
        a301384 := A301384(n) ;
        if a301384 > 0 then
            printf("%d,\n",a301384) ;
        end if;
    end do: # R. J. Mathar, May 02 2018
  • Mathematica
    nn=1000;lst={};lst2={};Do[s=(a+b+c)/2;If[IntegerQ[s],area2=s(s-a)(s-b)(s-c);If[0
    				
Showing 1-6 of 6 results.