cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A051516 Number of triangles with perimeter n having integer sides and area.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 4, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 3, 0, 2, 0, 0, 0, 4, 0, 1, 0, 0, 0, 3, 0, 0, 0, 5, 0, 1, 0, 1, 0, 2, 0, 5, 0, 0, 0, 1, 0, 1, 0, 4, 0, 0, 0, 8, 0, 0, 0, 1, 0, 5, 0, 0, 0, 0, 0, 5, 0, 6, 0, 5, 0, 0, 0, 2, 0, 0, 0, 12, 0, 1, 0
Offset: 1

Views

Author

Keywords

Comments

No such triangles with odd perimeter exist.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(1 - Ceiling[Sqrt[(n/2) (n/2 - i) (n/2 - k) (i + k - n/2)]] + Floor[Sqrt[(n/2) (n/2 - i) (n/2 - k) (i + k - n/2)]])*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 11 2019 *)

Formula

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (1 - ceiling(m) + floor(m)) * sign(floor((i+k)/(n-i-k+1))), where m = sqrt((n/2)*(n/2-i)*(n/2-k)*(i+k-n/2)). - Wesley Ivan Hurt, May 11 2019

A024153 Number of integer-sided triangles with sides a,b,c, a

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 3, 0, 0, 0, 2, 0, 1, 0, 1, 0, 2, 0, 3, 0, 0, 0, 1, 0, 1, 0, 3, 0, 0, 0, 8, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 4, 0, 3, 0, 1
Offset: 1

Views

Author

Keywords

Comments

No such triangles with odd perimeter (see A051516).
Records occur at: 1, 12, 36, 54, 84, 108, 192, 216, 294, 324, 378, 420, 432, 540, 588, 756, 972, 1176, 1452, 1764, 1944, 2028, 2352, 2904, 2916, 3024, 3072, 3402, 3468, 3780, 3888, 4116, 5292, 6348, 6804, 8748, 10164, ... - Antti Karttunen, Sep 25 2018

Crossrefs

Programs

  • PARI
    A024153(n) = if(n%2,0,my(k=0, t, p=n/2); for(a=1,n,for(b=1+max(a,(p-a)),n-(a+1),my(c=n-(a+b)); if((c<=b),break); if(((t = (p*(p-a)*(p-b)*(p-c))) > 0)&&issquare(t),k++))); (k)); \\ Antti Karttunen, Sep 25 2018

Extensions

a(100) corrected by Seiichi Manyama, Sep 13 2018

A070204 Number of isosceles integer triangles with perimeter n having integral inradius.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A070201(n) - A070203(n).

Crossrefs

A070145 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an isosceles integer triangle with integer area.

Original entry on oeis.org

39, 52, 269, 372, 375, 862, 957, 972, 1204, 1955, 1971, 1988, 2790, 2796, 3818, 5374, 6522, 6880, 6881, 6921, 7234, 7310, 7341, 7360, 9198, 9207, 10272, 14506, 15101, 15177, 15237, 21289, 21493, 21540, 21552, 21589
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(1)=39: [A070080(39), A070081(39), A070082(39)] = [5=5<6], area^2 = s*(s-5)*(s-5)*(s-6) with s=A070083(39)/2=(5+5+6)/2=8, area^2=8*3*3*2=16*9 is an integer square, therefore A070086(39)=area=4*3=12.
		

Crossrefs

Showing 1-4 of 4 results.