A182171 Area A of the triangles such that A, the sides and three perpendicular bisectors are integers.
108, 384, 432, 768, 972, 1536, 1728, 2700, 3072, 3456, 3888, 5292, 6144, 6912, 8748, 9600, 10800, 12288, 13068, 13824, 15552, 17280, 18252, 18816, 18900, 19200, 21168, 24300, 24576, 27000, 27648, 31104, 31212, 34560, 34992, 37632
Offset: 1
Keywords
Examples
Primitive solutions follow: Area, ( a, b, c), ( x, y, z), Case 108, (15, 15, 18), (10, 10, 12), Isosceles, 384, (24, 32, 40), (16, 12, 15), Right, 768, (40, 40, 64), (15, 15, 24), Isosceles, 17280, (120, 288, 312), (144, 60, 65), Right, 18900, (150, 255, 315), (100, 68, 84), Other, 27000, (255, 255, 450), (68, 68, 120), Isosceles, 34560, (312, 312, 576), (65, 65, 120), Isosceles, 53760, (272, 400, 448), (255, 150, 168), Other, 54000, (240, 450, 510), (225, 120, 136), Right, 91476, (429, 462, 495), (364, 308, 330), Other, 95256, (252, 819, 945), (168, 104, 120), Other, 96768, (336, 720, 960), (126, 105, 140), Other.
Links
- Ray Chandler, Table of n, a(n) for n = 1..65
- Eric W. Weisstein, MathWorld: Triangle
Programs
-
Maple
zz:=evalf(1/10^6):k:=0:nn:=350: for a from 15 to nn do: for b from a to nn do: for c from b to nn do: p:=(a+b+c)/2:s:=p*(p-a)*(p-b)*(p-c): u:= a^2+b^2-c^2:v:= b^2+c^2-a^2 :w:=c^2+a^2-b^2: if s>0 then s1:=sqrt(s):else fi: if u>0 then u0:=u:else u0:=zz:fi: if v>0 then v0:=v:else vo:=zz:fi: if w>0 then w0:=w:else w0:=zz:fi: a0:= evalf(2*a*s1/w0):a1:=evalf(2*a*s1/u0): b0:= evalf(2*b*s1/u0):b1:=evalf(2*b*s1/v0): c0:= evalf(2*c*s1/w0):c1:=evalf(2*c*s1/v0): if a0
Formula
x = Min{2*a*A/(c^2+a^2-b^2) , 2*a*A/(a^2+b^2-c^2)};
y = Min{2*b*A/(a^2+b^2-c^2) , 2*b*A/(b^2+c^2-a^2)};
z = Min{2*c*A/(c^2+a^2-b^2) , 2*c*A/(b^2+c^2-a^2)}.
Extensions
More terms from Ray Chandler, Apr 24 2013
Comments