cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A070086 Areas of integer triangles [A070080(n), A070081(n), A070082(n)], rounded values.

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 2, 3, 4, 4, 4, 2, 4, 4, 6, 5, 6, 7, 3, 5, 5, 7, 8, 6, 7, 8, 9, 3, 6, 6, 9, 7, 10, 11, 7, 9, 10, 11, 12, 4, 6, 8, 10, 8, 12, 12, 14, 8, 10, 12, 13, 12, 15, 16, 4, 7, 9, 12, 10, 14, 10, 15, 16, 17, 9, 12, 13, 15, 14, 17, 18, 19, 5, 8, 10
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

Triangles [A070080(A070142(n)), A070081(A070142(n)), A070082(A070142(n))] have integer areas = a(A070142(k)) = A070149(k).

Examples

			[A070080(25), A070081(25), A070082(25)] = [3,5,6] and s = A070083(25)/2 = (3+5+6)/2 = 7: a(25) = sqrt(s*(s-3)*(s-5)*(s-6)) = sqrt(7*(7-3)*(7-5)*(7-6)) = sqrt(7*4*2*1) = sqrt(56) = 7.48331, rounded = 7.
		

Crossrefs

The sides are given by A070080, A070081, A070082.
See A135622 for values signifying the precise area and further crossrefs.

Programs

  • Mathematica
    m = 50; (* max perimeter *)
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]]&];
    area[{a_, b_, c_}] := With[{p = (a+b+c)/2}, Sqrt[p(p-a)(p-b)(p-c)] // Round];
    area /@ triangles (* Jean-François Alcover, Oct 03 2021 *)

Formula

a(n) = sqrt(s*(s-u)*(s-v)*(s-w)), where u=A070080(n), v=A070081(n), w=A070082(n) and s = A070083(n)/2 = (u+v+w)/2.

A317182 Numbers k such that k = 16*area(T)^2 for an integer triangle, T.

Original entry on oeis.org

3, 15, 35, 48, 63, 99, 128, 135, 143, 195, 231, 240, 243, 255, 275, 320, 323, 351, 384, 399, 455, 483, 495, 560, 575, 576, 663, 675, 735, 768, 783, 819, 855, 896, 899, 935, 975, 1008, 1023, 1071, 1155, 1215, 1235, 1280, 1295, 1311, 1344, 1443, 1463, 1536, 1539
Offset: 1

Views

Author

N. J. A. Sloane, Jul 25 2018

Keywords

Comments

The possible lengths of the chord connecting the cusps of the lens-like intersection area between two circles with integer radii and integer distance d between their centers are of the form sqrt(a(n))/d. - Hugo Pfoertner, Sep 05 2020

Crossrefs

Cf. A316841.
Sorted and uniqued values of A135622 or A316853.

Extensions

More terms from Lars Blomberg, Apr 25 2019
Name edited by Peter Munn, Jul 30 2025

A331011 16 * squared area of triangles with integer sides i <= j <= k, such that more than one ordered triple of sides produces the same area.

Original entry on oeis.org

63, 495, 675, 768, 1008, 1071, 1280, 1575, 2304, 2499, 2835, 2880, 2975, 3135, 3456, 3591, 4095, 4275, 4455, 4608, 4928, 5103, 5760, 5775, 6615, 6656, 6831, 6975, 7040, 7488, 7875, 7920, 8064, 8415, 8448, 8463, 8775, 8855, 8960, 9135, 9216, 9600, 9984, 10535
Offset: 1

Views

Author

Hugo Pfoertner, Jan 06 2020

Keywords

Examples

			a(1) = 63: triangles (1,4,4) and (2,2,3) both have squared area 3.9375 = 63/16. All smaller squared area values A(i,j,k) correspond to unique triples of side lengths: A(1,1,1) = 0.1875 = 3/16, A(1,2,2) = 0.9375 = 15/16, A(1,3,3) = 2.1875 = 35/16, A(2,2,2) = 3 = 48/16.
a(2) = 495: A(2,6,7) = A(3,4,4) = 30.9375 = 495/16.
a(8) = 1575: A(2,11,12) = A(3,8,10) = A(4,5,6) = 98.4375 = 1575/16.
a(23) = 5760: A(2,19,19) = A(3,13,14) = A(6,7,7) = A(6,7,11) = 360 = 5760/16.
		

Crossrefs

Subset of A317182.
Nonunique terms of A135622 or A316853.
Cf. A331012.

A371973 a(n) is the number of distinct areas > 0 of triangles with integer sides and perimeter n.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 13, 19, 14, 21, 19, 23, 20, 27, 23, 30, 27, 32, 29, 35, 32, 39, 34, 44, 39, 48, 43, 52, 47, 55, 51, 60, 53, 63, 59, 69, 58, 74, 67, 78, 73, 84, 75, 90, 81, 92, 88, 101, 91, 108, 93, 112, 106
Offset: 3

Views

Author

Hugo Pfoertner, Apr 16 2024

Keywords

Crossrefs

See the formula section for the relationships with A026810, A070083, A135622 (which has many crossrefs related to areas of triangles).

Programs

  • PARI
    A2(a,b,c) = {my (s=(a+b+c)/2); s*(s-a)*(s-b)*(s-c)};
    a371973(n) = {my (A=List()); forpart (v=n, listput(A, A2(v[1],v[2],v[3])), [1,(n-1)\2], [3,3]); #Set(A)};
    
  • Python
    def A371973(n): return len(set((2*(b+c)-n)*(n-2*b)*(n-2*c) for c in range((n+2)//3, (n+1)//2) for b in range((n-c+1)//2, c+1))) # David Radcliffe, Aug 01 2025

Formula

a(n) = |{A135622(k) : A070083(k) = n}| = |{A135622(k) : A026810(n) < k <= A026810(n+1)}|. - Peter Munn, Jul 29 2025

Extensions

b-file corrected by David Radcliffe, Aug 01 2025
Showing 1-4 of 4 results.